summaryrefslogtreecommitdiff
path: root/js/dojo/dojox/gfx/decompose.js
blob: 8a347e66d50c846c8016871fd55afb88bf11655a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
//>>built
define("dojox/gfx/decompose", ["./_base", "dojo/_base/lang", "./matrix"], 
  function (g, lang, m){
	/*===== g = dojox.gfx =====*/
	function eq(/* Number */ a, /* Number */ b){
		// summary: compare two FP numbers for equality
		return Math.abs(a - b) <= 1e-6 * (Math.abs(a) + Math.abs(b));	// Boolean
	}

	function calcFromValues(/* Number */ r1, /* Number */ m1, /* Number */ r2, /* Number */ m2){
		// summary: uses two close FP ration and their original magnitudes to approximate the result
		if(!isFinite(r1)){
			return r2;	// Number
		}else if(!isFinite(r2)){
			return r1;	// Number
		}
		m1 = Math.abs(m1); m2 = Math.abs(m2);
		return (m1 * r1 + m2 * r2) / (m1 + m2);	// Number
	}

	function transpose(/* dojox.gfx.matrix.Matrix2D */ matrix){
		// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object
		var M = new m.Matrix2D(matrix);
		return lang.mixin(M, {dx: 0, dy: 0, xy: M.yx, yx: M.xy});	// dojox.gfx.matrix.Matrix2D
	}

	function scaleSign(/* dojox.gfx.matrix.Matrix2D */ matrix){
		return (matrix.xx * matrix.yy < 0 || matrix.xy * matrix.yx > 0) ? -1 : 1;	// Number
	}

	function eigenvalueDecomposition(/* dojox.gfx.matrix.Matrix2D */ matrix){
		// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object
		var M = m.normalize(matrix),
			b = -M.xx - M.yy,
			c = M.xx * M.yy - M.xy * M.yx,
			d = Math.sqrt(b * b - 4 * c),
			l1 = -(b + (b < 0 ? -d : d)) / 2,
			l2 = c / l1,
			vx1 = M.xy / (l1 - M.xx), vy1 = 1,
			vx2 = M.xy / (l2 - M.xx), vy2 = 1;
		if(eq(l1, l2)){
			vx1 = 1, vy1 = 0, vx2 = 0, vy2 = 1;
		}
		if(!isFinite(vx1)){
			vx1 = 1, vy1 = (l1 - M.xx) / M.xy;
			if(!isFinite(vy1)){
				vx1 = (l1 - M.yy) / M.yx, vy1 = 1;
				if(!isFinite(vx1)){
					vx1 = 1, vy1 = M.yx / (l1 - M.yy);
				}
			}
		}
		if(!isFinite(vx2)){
			vx2 = 1, vy2 = (l2 - M.xx) / M.xy;
			if(!isFinite(vy2)){
				vx2 = (l2 - M.yy) / M.yx, vy2 = 1;
				if(!isFinite(vx2)){
					vx2 = 1, vy2 = M.yx / (l2 - M.yy);
				}
			}
		}
		var d1 = Math.sqrt(vx1 * vx1 + vy1 * vy1),
			d2 = Math.sqrt(vx2 * vx2 + vy2 * vy2);
		if(!isFinite(vx1 /= d1)){ vx1 = 0; }
		if(!isFinite(vy1 /= d1)){ vy1 = 0; }
		if(!isFinite(vx2 /= d2)){ vx2 = 0; }
		if(!isFinite(vy2 /= d2)){ vy2 = 0; }
		return {	// Object
			value1: l1,
			value2: l2,
			vector1: {x: vx1, y: vy1},
			vector2: {x: vx2, y: vy2}
		};
	}

	function decomposeSR(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){
		// summary: decomposes a matrix into [scale, rotate]; no checks are done.
		var sign = scaleSign(M),
			a = result.angle1 = (Math.atan2(M.yx, M.yy) + Math.atan2(-sign * M.xy, sign * M.xx)) / 2,
			cos = Math.cos(a), sin = Math.sin(a);
		result.sx = calcFromValues(M.xx / cos, cos, -M.xy / sin, sin);
		result.sy = calcFromValues(M.yy / cos, cos,  M.yx / sin, sin);
		return result;	// Object
	}

	function decomposeRS(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){
		// summary: decomposes a matrix into [rotate, scale]; no checks are done
		var sign = scaleSign(M),
			a = result.angle2 = (Math.atan2(sign * M.yx, sign * M.xx) + Math.atan2(-M.xy, M.yy)) / 2,
			cos = Math.cos(a), sin = Math.sin(a);
		result.sx = calcFromValues(M.xx / cos, cos,  M.yx / sin, sin);
		result.sy = calcFromValues(M.yy / cos, cos, -M.xy / sin, sin);
		return result;	// Object
	}

	return g.decompose = function(matrix){
		// summary: Decompose a 2D matrix into translation, scaling, and rotation components.
		// description: This function decompose a matrix into four logical components:
		//	translation, rotation, scaling, and one more rotation using SVD.
		//	The components should be applied in following order:
		//	| [translate, rotate(angle2), scale, rotate(angle1)]
		// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object
		var M = m.normalize(matrix),
			result = {dx: M.dx, dy: M.dy, sx: 1, sy: 1, angle1: 0, angle2: 0};
		// detect case: [scale]
		if(eq(M.xy, 0) && eq(M.yx, 0)){
			return lang.mixin(result, {sx: M.xx, sy: M.yy});	// Object
		}
		// detect case: [scale, rotate]
		if(eq(M.xx * M.yx, -M.xy * M.yy)){
			return decomposeSR(M, result);	// Object
		}
		// detect case: [rotate, scale]
		if(eq(M.xx * M.xy, -M.yx * M.yy)){
			return decomposeRS(M, result);	// Object
		}
		// do SVD
		var	MT = transpose(M),
			u  = eigenvalueDecomposition([M, MT]),
			v  = eigenvalueDecomposition([MT, M]),
			U  = new m.Matrix2D({xx: u.vector1.x, xy: u.vector2.x, yx: u.vector1.y, yy: u.vector2.y}),
			VT = new m.Matrix2D({xx: v.vector1.x, xy: v.vector1.y, yx: v.vector2.x, yy: v.vector2.y}),
			S = new m.Matrix2D([m.invert(U), M, m.invert(VT)]);
		decomposeSR(VT, result);
		S.xx *= result.sx;
		S.yy *= result.sy;
		decomposeRS(U, result);
		S.xx *= result.sx;
		S.yy *= result.sy;
		return lang.mixin(result, {sx: S.xx, sy: S.yy});	// Object
	};
});