summaryrefslogtreecommitdiff
path: root/js/dojo/dojox/calc/toFrac.js
blob: 2a76d5ab253d65b5e5c9593cf5c190707e71c26f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
//>>built
define("dojox/calc/toFrac", [
	"dojo/_base/lang",
	"dojox/calc/_Executor"
], function(lang, calc) {

	var multiples;

	function _fracHashInit(){
		var sqrts = [
			5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,
			30,31,33,34,35,37,38,39,41,42,43,46,47,51,53,55,57,58,59,
			61,62,65,66,67,69,70,71,73,74,77,78,79,82,83,85,86,87,89,91,93,94,95,97
		];
		multiples = { "1":1, "\u221A(2)":Math.sqrt(2), "\u221A(3)":Math.sqrt(3), "pi":Math.PI };
		// populate the rest of the multiples array
		for(var i in sqrts){
			var n = sqrts[i];
			multiples["\u221A("+n+")"] = Math.sqrt(n);
		}
		multiples["\u221A(pi)"] = Math.sqrt(Math.PI);
	}

	function _fracLookup(number){
		function findSimpleFraction(fraction){
			var denom1Low = Math.floor(1 / fraction);
			// fraction <= 1/denom1Low 
			var quotient = calc.approx(1 / denom1Low);
			if(quotient == fraction){ return { n:1, d:denom1Low }; }
			var denom1High = denom1Low + 1;
			// 1/denom1High <= fraction < 1/denom1Low 
			quotient = calc.approx(1 / denom1High);
			if(quotient == fraction){ return { n:1, d:denom1High }; }
			if(denom1Low >= 50){ return null; } // only 1's in the numerator beyond this point
			// 1/denom1High < fraction < 1/denom1Low 
			var denom2 = denom1Low + denom1High;
			quotient = calc.approx(2 / denom2);
			// 1/denom1High < 2/(denom1Low+denom1High) < 1/denom1Low 
			if(quotient == fraction){ return { n:2, d:denom2 }; }
			if(denom1Low >= 34){ return null; } // only 1's and 2's in the numerator beyond this point
			var less2 = fraction < quotient;
			// if less2
			//	1/denom1High < fraction < 2/(denom1Low+denom1High)
			// else
			//	2/(denom1Low+denom1High) < fraction < 1/denom1Low
			var denom4 = denom2 * 2 + (less2 ? 1 : -1);
			quotient = calc.approx(4 / denom4);
			// 1/denom1High < 4/(2*denom1Low+2*denom1High+1) < 2/(denom1Low+denom1High) < 4/(2*denom1Low+2*denom1High-1) < 1/denom1Low 
			if(quotient == fraction){ return { n:4, d:denom4 }; }
			var less4 = fraction < quotient;
			// we've already checked for 1, 2 and 4, but now see if we need to check for 3 in the numerator
			if((less2 && !less4) || (!less2 && less4)){
				var denom3 = (denom2 + denom4) >> 1;
				quotient = calc.approx(3 / denom3);
				// 1/denom1High < 4/(2*denom1Low+2*denom1High+1) < 3/((3*denom1Low+3*denom1High+1)/2) < 2/(denom1Low+denom1High) < 3/((3*denom1Low+3*denom1High-1)/2) < 4/(2*denom1Low+2*denom1High-1) < 1/denom1Low 
				if(quotient == fraction){ return { n:3, d:denom3 }; }
			}
			if(denom1Low >= 20){ return null; } // only 1's, 2's, 3's, and 4's in the numerator beyond this point
			// if less2
			// 	if less4
			//		1/denom1High < fraction < 4/(2*denom1Low+2*denom1High+1)
			//	else
			//		4/(2*denom1Low+2*denom1High+1) < fraction < 2/(denom1Low+denom1High)
			// else
			// 	if less4
			//		2/(denom1Low+denom1High) < fraction < 4/(2*denom1Low+2*denom1High-1)
			//	else
			//		4/(2*denom1Low+2*denom1High-1) < fraction < 1/denom1Low
			var smallestDenom = denom2 + denom1Low * 2;
			var largestDenom = smallestDenom + 2;
			for(var numerator = 5; smallestDenom <= 100; numerator++){ // start with 5 in the numerator
				smallestDenom += denom1Low;
				largestDenom += denom1High;
				var startDenom = less2 ? ((largestDenom + smallestDenom + 1) >> 1) : smallestDenom;
				var stopDenom = less2 ? largestDenom : ((largestDenom + smallestDenom - 1) >> 1);
				startDenom = less4 ? ((startDenom + stopDenom) >> 1) : startDenom;
				stopDenom = less4 ? stopDenom : ((startDenom + stopDenom) >> 1);
				for(var thisDenom = startDenom; thisDenom <= stopDenom; thisDenom++){
					if(numerator & 1 == 0 && thisDenom & 1 == 0){ continue; } // skip where n and d are both even
					quotient = calc.approx(numerator / thisDenom);
					if(quotient == fraction){ return { n:numerator, d:thisDenom }; }
					if(quotient < fraction){ break; } // stop since the values will just get smaller
				}
			}
			return null;
		}
		number = Math.abs(number);
		for(var mt in multiples){
			var multiple = multiples[mt];
			var simpleFraction = number / multiple;
			var wholeNumber = Math.floor(simpleFraction);
			simpleFraction = calc.approx(simpleFraction - wholeNumber);
			if(simpleFraction == 0){
				return { mt:mt, m:multiple, n:wholeNumber, d:1 };
			}else{
				var a = findSimpleFraction(simpleFraction);
				if(!a){ continue; }
				return { mt:mt, m:multiple, n:(wholeNumber * a.d + a.n), d:a.d };
			}
		}
		return null;
	}

	// make the hash
	_fracHashInit();

	// add toFrac to the calculator
	return lang.mixin(calc, {
		toFrac: function(number){// get a string fraction for a decimal with a set range of numbers, based on the hash
			var f = _fracLookup(number);
			return f ? ((number < 0 ? '-' : '') + (f.m == 1 ? '' : (f.n == 1 ? '' : (f.n + '*'))) + (f.m == 1 ? f.n : f.mt) + ((f.d == 1 ? '' : '/' + f.d))) : number;
			//return f ? ((number < 0 ? '-' : '') + (f.m == 1 ? '' : (f.n == 1 ? '' : (f.n + '*'))) + (f.m == 1 ? f.n : f.mt) + '/' + f.d) : number;
		},
		pow: function(base, exponent){// pow benefits from toFrac because it can overcome many of the limitations set before the standard Math.pow
			// summary:
			//	Computes base ^ exponent
			//	Wrapper to Math.pow(base, exponent) to handle (-27) ^ (1/3)
			function isInt(n){
				return Math.floor(n) == n;
			}

			if(base>0||isInt(exponent)){
				return Math.pow(base, exponent);
			}else{
				var f = _fracLookup(exponent);
				if(base >= 0){
					return (f && f.m == 1)
						? Math.pow(Math.pow(base, 1 / f.d), exponent < 0 ? -f.n : f.n) // 32 ^ (2/5) is much more accurate if done as (32 ^ (1/5)) ^ 2
						: Math.pow(base, exponent);
				}else{	// e.g. (1/3) root of -27 = -3, 1 / exponent must be an odd integer for a negative base
					return (f && f.d & 1) ? Math.pow(Math.pow(-Math.pow(-base, 1 / f.d), exponent < 0 ? -f.n : f.n), f.m) : NaN;
				}
			}
		}
	});
/*
	function reduceError(number){
		var f = _fracLookup(number);
		if(!f){ f = _fracLookup(number); }
		return f ? ((number < 0 ? -1 : 1) * f.n * f.m / f.d) : number;
	}
*/
});