1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/*
Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
Available via Academic Free License >= 2.1 OR the modified BSD license.
see: http://dojotoolkit.org/license for details
*/
dojo._xdResourceLoaded(function(dojo, dijit, dojox){
return {depends: [["provide", "dojox.gfx.decompose"],
["require", "dojox.gfx.matrix"]],
defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.gfx.decompose"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
dojo._hasResource["dojox.gfx.decompose"] = true;
dojo.provide("dojox.gfx.decompose");
dojo.require("dojox.gfx.matrix");
(function(){
var m = dojox.gfx.matrix;
function eq(/* Number */ a, /* Number */ b){
// summary: compare two FP numbers for equality
return Math.abs(a - b) <= 1e-6 * (Math.abs(a) + Math.abs(b)); // Boolean
}
function calcFromValues(/* Number */ r1, /* Number */ m1, /* Number */ r2, /* Number */ m2){
// summary: uses two close FP ration and their original magnitudes to approximate the result
if(!isFinite(r1)){
return r2; // Number
}else if(!isFinite(r2)){
return r1; // Number
}
m1 = Math.abs(m1), m2 = Math.abs(m2);
return (m1 * r1 + m2 * r2) / (m1 + m2); // Number
}
function transpose(/* dojox.gfx.matrix.Matrix2D */ matrix){
// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object
var M = new m.Matrix2D(matrix);
return dojo.mixin(M, {dx: 0, dy: 0, xy: M.yx, yx: M.xy}); // dojox.gfx.matrix.Matrix2D
}
function scaleSign(/* dojox.gfx.matrix.Matrix2D */ matrix){
return (matrix.xx * matrix.yy < 0 || matrix.xy * matrix.yx > 0) ? -1 : 1; // Number
}
function eigenvalueDecomposition(/* dojox.gfx.matrix.Matrix2D */ matrix){
// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object
var M = m.normalize(matrix),
b = -M.xx - M.yy,
c = M.xx * M.yy - M.xy * M.yx,
d = Math.sqrt(b * b - 4 * c),
l1 = -(b + (b < 0 ? -d : d)) / 2,
l2 = c / l1,
vx1 = M.xy / (l1 - M.xx), vy1 = 1,
vx2 = M.xy / (l2 - M.xx), vy2 = 1;
if(eq(l1, l2)){
vx1 = 1, vy1 = 0, vx2 = 0, vy2 = 1;
}
if(!isFinite(vx1)){
vx1 = 1, vy1 = (l1 - M.xx) / M.xy;
if(!isFinite(vy1)){
vx1 = (l1 - M.yy) / M.yx, vy1 = 1;
if(!isFinite(vx1)){
vx1 = 1, vy1 = M.yx / (l1 - M.yy);
}
}
}
if(!isFinite(vx2)){
vx2 = 1, vy2 = (l2 - M.xx) / M.xy;
if(!isFinite(vy2)){
vx2 = (l2 - M.yy) / M.yx, vy2 = 1;
if(!isFinite(vx2)){
vx2 = 1, vy2 = M.yx / (l2 - M.yy);
}
}
}
var d1 = Math.sqrt(vx1 * vx1 + vy1 * vy1),
d2 = Math.sqrt(vx2 * vx2 + vy2 * vy2);
if(!isFinite(vx1 /= d1)){ vx1 = 0; }
if(!isFinite(vy1 /= d1)){ vy1 = 0; }
if(!isFinite(vx2 /= d2)){ vx2 = 0; }
if(!isFinite(vy2 /= d2)){ vy2 = 0; }
return { // Object
value1: l1,
value2: l2,
vector1: {x: vx1, y: vy1},
vector2: {x: vx2, y: vy2}
};
}
function decomposeSR(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){
// summary: decomposes a matrix into [scale, rotate]; no checks are done.
var sign = scaleSign(M),
a = result.angle1 = (Math.atan2(M.yx, M.yy) + Math.atan2(-sign * M.xy, sign * M.xx)) / 2,
cos = Math.cos(a), sin = Math.sin(a);
result.sx = calcFromValues(M.xx / cos, cos, -M.xy / sin, sin);
result.sy = calcFromValues(M.yy / cos, cos, M.yx / sin, sin);
return result; // Object
}
function decomposeRS(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){
// summary: decomposes a matrix into [rotate, scale]; no checks are done
var sign = scaleSign(M),
a = result.angle2 = (Math.atan2(sign * M.yx, sign * M.xx) + Math.atan2(-M.xy, M.yy)) / 2,
cos = Math.cos(a), sin = Math.sin(a);
result.sx = calcFromValues(M.xx / cos, cos, M.yx / sin, sin);
result.sy = calcFromValues(M.yy / cos, cos, -M.xy / sin, sin);
return result; // Object
}
dojox.gfx.decompose = function(matrix){
// summary: decompose a 2D matrix into translation, scaling, and rotation components
// description: this function decompose a matrix into four logical components:
// translation, rotation, scaling, and one more rotation using SVD.
// The components should be applied in following order:
// | [translate, rotate(angle2), scale, rotate(angle1)]
// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object
var M = m.normalize(matrix),
result = {dx: M.dx, dy: M.dy, sx: 1, sy: 1, angle1: 0, angle2: 0};
// detect case: [scale]
if(eq(M.xy, 0) && eq(M.yx, 0)){
return dojo.mixin(result, {sx: M.xx, sy: M.yy}); // Object
}
// detect case: [scale, rotate]
if(eq(M.xx * M.yx, -M.xy * M.yy)){
return decomposeSR(M, result); // Object
}
// detect case: [rotate, scale]
if(eq(M.xx * M.xy, -M.yx * M.yy)){
return decomposeRS(M, result); // Object
}
// do SVD
var MT = transpose(M),
u = eigenvalueDecomposition([M, MT]),
v = eigenvalueDecomposition([MT, M]),
U = new m.Matrix2D({xx: u.vector1.x, xy: u.vector2.x, yx: u.vector1.y, yy: u.vector2.y}),
VT = new m.Matrix2D({xx: v.vector1.x, xy: v.vector1.y, yx: v.vector2.x, yy: v.vector2.y}),
S = new m.Matrix2D([m.invert(U), M, m.invert(VT)]);
decomposeSR(VT, result);
S.xx *= result.sx;
S.yy *= result.sy;
decomposeRS(U, result);
S.xx *= result.sx;
S.yy *= result.sy;
return dojo.mixin(result, {sx: S.xx, sy: S.yy}); // Object
};
})();
}
}};});
|