summaryrefslogtreecommitdiff
path: root/js/dojo-1.6/dojox/gfx/arc.js
blob: 739ce9cfa73a5b2476cbe97d921bf9ccee8936cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
	Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
	Available via Academic Free License >= 2.1 OR the modified BSD license.
	see: http://dojotoolkit.org/license for details
*/


if(!dojo._hasResource["dojox.gfx.arc"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
dojo._hasResource["dojox.gfx.arc"] = true;
dojo.provide("dojox.gfx.arc");

dojo.require("dojox.gfx.matrix");

(function(){
	var m = dojox.gfx.matrix,
		twoPI = 2 * Math.PI, pi4 = Math.PI / 4, pi8 = Math.PI / 8,
		pi48 = pi4 + pi8, curvePI4 = unitArcAsBezier(pi8);

	function unitArcAsBezier(alpha){
		// summary: return a start point, 1st and 2nd control points, and an end point of
		//		a an arc, which is reflected on the x axis
		// alpha: Number: angle in radians, the arc will be 2 * angle size
		var cosa  = Math.cos(alpha), sina  = Math.sin(alpha),
			p2 = {x: cosa + (4 / 3) * (1 - cosa), y: sina - (4 / 3) * cosa * (1 - cosa) / sina};
		return {	// Object
			s:  {x: cosa, y: -sina},
			c1: {x: p2.x, y: -p2.y},
			c2: p2,
			e:  {x: cosa, y: sina}
		};
	}

	dojox.gfx.arc = {
		unitArcAsBezier: unitArcAsBezier,
		curvePI4: curvePI4,
		arcAsBezier: function(last, rx, ry, xRotg, large, sweep, x, y){
			// summary: calculates an arc as a series of Bezier curves
			//	given the last point and a standard set of SVG arc parameters,
			//	it returns an array of arrays of parameters to form a series of
			//	absolute Bezier curves.
			// last: Object: a point-like object as a start of the arc
			// rx: Number: a horizontal radius for the virtual ellipse
			// ry: Number: a vertical radius for the virtual ellipse
			// xRotg: Number: a rotation of an x axis of the virtual ellipse in degrees
			// large: Boolean: which part of the ellipse will be used (the larger arc if true)
			// sweep: Boolean: direction of the arc (CW if true)
			// x: Number: the x coordinate of the end point of the arc
			// y: Number: the y coordinate of the end point of the arc

			// calculate parameters
			large = Boolean(large);
			sweep = Boolean(sweep);
			var xRot = m._degToRad(xRotg),
				rx2 = rx * rx, ry2 = ry * ry,
				pa = m.multiplyPoint(
					m.rotate(-xRot),
					{x: (last.x - x) / 2, y: (last.y - y) / 2}
				),
				pax2 = pa.x * pa.x, pay2 = pa.y * pa.y,
				c1 = Math.sqrt((rx2 * ry2 - rx2 * pay2 - ry2 * pax2) / (rx2 * pay2 + ry2 * pax2));
			if(isNaN(c1)){ c1 = 0; }
			var	ca = {
					x:  c1 * rx * pa.y / ry,
					y: -c1 * ry * pa.x / rx
				};
			if(large == sweep){
				ca = {x: -ca.x, y: -ca.y};
			}
			// the center
			var c = m.multiplyPoint(
				[
					m.translate(
						(last.x + x) / 2,
						(last.y + y) / 2
					),
					m.rotate(xRot)
				],
				ca
			);
			// calculate the elliptic transformation
			var elliptic_transform = m.normalize([
				m.translate(c.x, c.y),
				m.rotate(xRot),
				m.scale(rx, ry)
			]);
			// start, end, and size of our arc
			var inversed = m.invert(elliptic_transform),
				sp = m.multiplyPoint(inversed, last),
				ep = m.multiplyPoint(inversed, x, y),
				startAngle = Math.atan2(sp.y, sp.x),
				endAngle   = Math.atan2(ep.y, ep.x),
				theta = startAngle - endAngle;	// size of our arc in radians
			if(sweep){ theta = -theta; }
			if(theta < 0){
				theta += twoPI;
			}else if(theta > twoPI){
				theta -= twoPI;
			}

			// draw curve chunks
			var alpha = pi8, curve = curvePI4, step  = sweep ? alpha : -alpha,
				result = [];
			for(var angle = theta; angle > 0; angle -= pi4){
				if(angle < pi48){
					alpha = angle / 2;
					curve = unitArcAsBezier(alpha);
					step  = sweep ? alpha : -alpha;
					angle = 0;	// stop the loop
				}
				var c1, c2, e,
					M = m.normalize([elliptic_transform, m.rotate(startAngle + step)]);
				if(sweep){
					c1 = m.multiplyPoint(M, curve.c1);
					c2 = m.multiplyPoint(M, curve.c2);
					e  = m.multiplyPoint(M, curve.e );
				}else{
					c1 = m.multiplyPoint(M, curve.c2);
					c2 = m.multiplyPoint(M, curve.c1);
					e  = m.multiplyPoint(M, curve.s );
				}
				// draw the curve
				result.push([c1.x, c1.y, c2.x, c2.y, e.x, e.y]);
				startAngle += 2 * step;
			}
			return result;	// Array
		}
	};
})();

}