summaryrefslogtreecommitdiff
path: root/js/dojo-1.6/dojox/math
diff options
context:
space:
mode:
Diffstat (limited to 'js/dojo-1.6/dojox/math')
-rw-r--r--js/dojo-1.6/dojox/math/BigInteger-ext.js670
-rw-r--r--js/dojo-1.6/dojox/math/BigInteger-ext.xd.js675
-rw-r--r--js/dojo-1.6/dojox/math/BigInteger.js600
-rw-r--r--js/dojo-1.6/dojox/math/BigInteger.xd.js604
-rw-r--r--js/dojo-1.6/dojox/math/README40
-rw-r--r--js/dojo-1.6/dojox/math/_base.js173
-rw-r--r--js/dojo-1.6/dojox/math/_base.xd.js177
-rw-r--r--js/dojo-1.6/dojox/math/curves.js203
-rw-r--r--js/dojo-1.6/dojox/math/curves.xd.js207
-rw-r--r--js/dojo-1.6/dojox/math/matrix.js304
-rw-r--r--js/dojo-1.6/dojox/math/matrix.xd.js308
-rw-r--r--js/dojo-1.6/dojox/math/random/Secure.js107
-rw-r--r--js/dojo-1.6/dojox/math/random/Secure.xd.js111
-rw-r--r--js/dojo-1.6/dojox/math/random/Simple.js36
-rw-r--r--js/dojo-1.6/dojox/math/random/Simple.xd.js40
-rw-r--r--js/dojo-1.6/dojox/math/random/prng4.js69
-rw-r--r--js/dojo-1.6/dojox/math/random/prng4.xd.js73
-rw-r--r--js/dojo-1.6/dojox/math/round.js75
-rw-r--r--js/dojo-1.6/dojox/math/round.xd.js79
-rw-r--r--js/dojo-1.6/dojox/math/stats.js204
-rw-r--r--js/dojo-1.6/dojox/math/stats.xd.js208
21 files changed, 4963 insertions, 0 deletions
diff --git a/js/dojo-1.6/dojox/math/BigInteger-ext.js b/js/dojo-1.6/dojox/math/BigInteger-ext.js
new file mode 100644
index 0000000..6b628a7
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/BigInteger-ext.js
@@ -0,0 +1,670 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.BigInteger-ext"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.BigInteger-ext"] = true;
+dojo.provide("dojox.math.BigInteger-ext");
+dojo.require("dojox.math.BigInteger");
+
+
+dojo.experimental("dojox.math.BigInteger-ext");
+
+// Contributed under CLA by Tom Wu
+
+// Extended JavaScript BN functions, required for RSA private ops.
+
+(function(){
+ var BigInteger = dojox.math.BigInteger,
+ nbi = BigInteger._nbi, nbv = BigInteger._nbv,
+ nbits = BigInteger._nbits,
+ Montgomery = BigInteger._Montgomery;
+
+ // (public)
+ function bnClone() { var r = nbi(); this._copyTo(r); return r; }
+
+ // (public) return value as integer
+ function bnIntValue() {
+ if(this.s < 0) {
+ if(this.t == 1) return this[0]-this._DV;
+ else if(this.t == 0) return -1;
+ }
+ else if(this.t == 1) return this[0];
+ else if(this.t == 0) return 0;
+ // assumes 16 < DB < 32
+ return ((this[1]&((1<<(32-this._DB))-1))<<this._DB)|this[0];
+ }
+
+ // (public) return value as byte
+ function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
+
+ // (public) return value as short (assumes DB>=16)
+ function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
+
+ // (protected) return x s.t. r^x < DV
+ function bnpChunkSize(r) { return Math.floor(Math.LN2*this._DB/Math.log(r)); }
+
+ // (public) 0 if this == 0, 1 if this > 0
+ function bnSigNum() {
+ if(this.s < 0) return -1;
+ else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
+ else return 1;
+ }
+
+ // (protected) convert to radix string
+ function bnpToRadix(b) {
+ if(b == null) b = 10;
+ if(this.signum() == 0 || b < 2 || b > 36) return "0";
+ var cs = this._chunkSize(b);
+ var a = Math.pow(b,cs);
+ var d = nbv(a), y = nbi(), z = nbi(), r = "";
+ this._divRemTo(d,y,z);
+ while(y.signum() > 0) {
+ r = (a+z.intValue()).toString(b).substr(1) + r;
+ y._divRemTo(d,y,z);
+ }
+ return z.intValue().toString(b) + r;
+ }
+
+ // (protected) convert from radix string
+ function bnpFromRadix(s,b) {
+ this._fromInt(0);
+ if(b == null) b = 10;
+ var cs = this._chunkSize(b);
+ var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
+ for(var i = 0; i < s.length; ++i) {
+ var x = intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
+ continue;
+ }
+ w = b*w+x;
+ if(++j >= cs) {
+ this._dMultiply(d);
+ this._dAddOffset(w,0);
+ j = 0;
+ w = 0;
+ }
+ }
+ if(j > 0) {
+ this._dMultiply(Math.pow(b,j));
+ this._dAddOffset(w,0);
+ }
+ if(mi) BigInteger.ZERO._subTo(this,this);
+ }
+
+ // (protected) alternate constructor
+ function bnpFromNumber(a,b,c) {
+ if("number" == typeof b) {
+ // new BigInteger(int,int,RNG)
+ if(a < 2) this._fromInt(1);
+ else {
+ this._fromNumber(a,c);
+ if(!this.testBit(a-1)) // force MSB set
+ this._bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
+ if(this._isEven()) this._dAddOffset(1,0); // force odd
+ while(!this.isProbablePrime(b)) {
+ this._dAddOffset(2,0);
+ if(this.bitLength() > a) this._subTo(BigInteger.ONE.shiftLeft(a-1),this);
+ }
+ }
+ }
+ else {
+ // new BigInteger(int,RNG)
+ var x = [], t = a&7;
+ x.length = (a>>3)+1;
+ b.nextBytes(x);
+ if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
+ this._fromString(x,256);
+ }
+ }
+
+ // (public) convert to bigendian byte array
+ function bnToByteArray() {
+ var i = this.t, r = [];
+ r[0] = this.s;
+ var p = this._DB-(i*this._DB)%8, d, k = 0;
+ if(i-- > 0) {
+ if(p < this._DB && (d = this[i]>>p) != (this.s&this._DM)>>p)
+ r[k++] = d|(this.s<<(this._DB-p));
+ while(i >= 0) {
+ if(p < 8) {
+ d = (this[i]&((1<<p)-1))<<(8-p);
+ d |= this[--i]>>(p+=this._DB-8);
+ }
+ else {
+ d = (this[i]>>(p-=8))&0xff;
+ if(p <= 0) { p += this._DB; --i; }
+ }
+ if((d&0x80) != 0) d |= -256;
+ if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
+ if(k > 0 || d != this.s) r[k++] = d;
+ }
+ }
+ return r;
+ }
+
+ function bnEquals(a) { return(this.compareTo(a)==0); }
+ function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
+ function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
+
+ // (protected) r = this op a (bitwise)
+ function bnpBitwiseTo(a,op,r) {
+ var i, f, m = Math.min(a.t,this.t);
+ for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
+ if(a.t < this.t) {
+ f = a.s&this._DM;
+ for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
+ r.t = this.t;
+ }
+ else {
+ f = this.s&this._DM;
+ for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
+ r.t = a.t;
+ }
+ r.s = op(this.s,a.s);
+ r._clamp();
+ }
+
+ // (public) this & a
+ function op_and(x,y) { return x&y; }
+ function bnAnd(a) { var r = nbi(); this._bitwiseTo(a,op_and,r); return r; }
+
+ // (public) this | a
+ function op_or(x,y) { return x|y; }
+ function bnOr(a) { var r = nbi(); this._bitwiseTo(a,op_or,r); return r; }
+
+ // (public) this ^ a
+ function op_xor(x,y) { return x^y; }
+ function bnXor(a) { var r = nbi(); this._bitwiseTo(a,op_xor,r); return r; }
+
+ // (public) this & ~a
+ function op_andnot(x,y) { return x&~y; }
+ function bnAndNot(a) { var r = nbi(); this._bitwiseTo(a,op_andnot,r); return r; }
+
+ // (public) ~this
+ function bnNot() {
+ var r = nbi();
+ for(var i = 0; i < this.t; ++i) r[i] = this._DM&~this[i];
+ r.t = this.t;
+ r.s = ~this.s;
+ return r;
+ }
+
+ // (public) this << n
+ function bnShiftLeft(n) {
+ var r = nbi();
+ if(n < 0) this._rShiftTo(-n,r); else this._lShiftTo(n,r);
+ return r;
+ }
+
+ // (public) this >> n
+ function bnShiftRight(n) {
+ var r = nbi();
+ if(n < 0) this._lShiftTo(-n,r); else this._rShiftTo(n,r);
+ return r;
+ }
+
+ // return index of lowest 1-bit in x, x < 2^31
+ function lbit(x) {
+ if(x == 0) return -1;
+ var r = 0;
+ if((x&0xffff) == 0) { x >>= 16; r += 16; }
+ if((x&0xff) == 0) { x >>= 8; r += 8; }
+ if((x&0xf) == 0) { x >>= 4; r += 4; }
+ if((x&3) == 0) { x >>= 2; r += 2; }
+ if((x&1) == 0) ++r;
+ return r;
+ }
+
+ // (public) returns index of lowest 1-bit (or -1 if none)
+ function bnGetLowestSetBit() {
+ for(var i = 0; i < this.t; ++i)
+ if(this[i] != 0) return i*this._DB+lbit(this[i]);
+ if(this.s < 0) return this.t*this._DB;
+ return -1;
+ }
+
+ // return number of 1 bits in x
+ function cbit(x) {
+ var r = 0;
+ while(x != 0) { x &= x-1; ++r; }
+ return r;
+ }
+
+ // (public) return number of set bits
+ function bnBitCount() {
+ var r = 0, x = this.s&this._DM;
+ for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
+ return r;
+ }
+
+ // (public) true iff nth bit is set
+ function bnTestBit(n) {
+ var j = Math.floor(n/this._DB);
+ if(j >= this.t) return(this.s!=0);
+ return((this[j]&(1<<(n%this._DB)))!=0);
+ }
+
+ // (protected) this op (1<<n)
+ function bnpChangeBit(n,op) {
+ var r = BigInteger.ONE.shiftLeft(n);
+ this._bitwiseTo(r,op,r);
+ return r;
+ }
+
+ // (public) this | (1<<n)
+ function bnSetBit(n) { return this._changeBit(n,op_or); }
+
+ // (public) this & ~(1<<n)
+ function bnClearBit(n) { return this._changeBit(n,op_andnot); }
+
+ // (public) this ^ (1<<n)
+ function bnFlipBit(n) { return this._changeBit(n,op_xor); }
+
+ // (protected) r = this + a
+ function bnpAddTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]+a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ if(a.t < this.t) {
+ c += a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c += a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c += a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c > 0) r[i++] = c;
+ else if(c < -1) r[i++] = this._DV+c;
+ r.t = i;
+ r._clamp();
+ }
+
+ // (public) this + a
+ function bnAdd(a) { var r = nbi(); this._addTo(a,r); return r; }
+
+ // (public) this - a
+ function bnSubtract(a) { var r = nbi(); this._subTo(a,r); return r; }
+
+ // (public) this * a
+ function bnMultiply(a) { var r = nbi(); this._multiplyTo(a,r); return r; }
+
+ // (public) this / a
+ function bnDivide(a) { var r = nbi(); this._divRemTo(a,r,null); return r; }
+
+ // (public) this % a
+ function bnRemainder(a) { var r = nbi(); this._divRemTo(a,null,r); return r; }
+
+ // (public) [this/a,this%a]
+ function bnDivideAndRemainder(a) {
+ var q = nbi(), r = nbi();
+ this._divRemTo(a,q,r);
+ return [q, r];
+ }
+
+ // (protected) this *= n, this >= 0, 1 < n < DV
+ function bnpDMultiply(n) {
+ this[this.t] = this.am(0,n-1,this,0,0,this.t);
+ ++this.t;
+ this._clamp();
+ }
+
+ // (protected) this += n << w words, this >= 0
+ function bnpDAddOffset(n,w) {
+ while(this.t <= w) this[this.t++] = 0;
+ this[w] += n;
+ while(this[w] >= this._DV) {
+ this[w] -= this._DV;
+ if(++w >= this.t) this[this.t++] = 0;
+ ++this[w];
+ }
+ }
+
+ // A "null" reducer
+ function NullExp() {}
+ function nNop(x) { return x; }
+ function nMulTo(x,y,r) { x._multiplyTo(y,r); }
+ function nSqrTo(x,r) { x._squareTo(r); }
+
+ NullExp.prototype.convert = nNop;
+ NullExp.prototype.revert = nNop;
+ NullExp.prototype.mulTo = nMulTo;
+ NullExp.prototype.sqrTo = nSqrTo;
+
+ // (public) this^e
+ function bnPow(e) { return this._exp(e,new NullExp()); }
+
+ // (protected) r = lower n words of "this * a", a.t <= n
+ // "this" should be the larger one if appropriate.
+ function bnpMultiplyLowerTo(a,n,r) {
+ var i = Math.min(this.t+a.t,n);
+ r.s = 0; // assumes a,this >= 0
+ r.t = i;
+ while(i > 0) r[--i] = 0;
+ var j;
+ for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
+ for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
+ r._clamp();
+ }
+
+ // (protected) r = "this * a" without lower n words, n > 0
+ // "this" should be the larger one if appropriate.
+ function bnpMultiplyUpperTo(a,n,r) {
+ --n;
+ var i = r.t = this.t+a.t-n;
+ r.s = 0; // assumes a,this >= 0
+ while(--i >= 0) r[i] = 0;
+ for(i = Math.max(n-this.t,0); i < a.t; ++i)
+ r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
+ r._clamp();
+ r._drShiftTo(1,r);
+ }
+
+ // Barrett modular reduction
+ function Barrett(m) {
+ // setup Barrett
+ this.r2 = nbi();
+ this.q3 = nbi();
+ BigInteger.ONE._dlShiftTo(2*m.t,this.r2);
+ this.mu = this.r2.divide(m);
+ this.m = m;
+ }
+
+ function barrettConvert(x) {
+ if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
+ else if(x.compareTo(this.m) < 0) return x;
+ else { var r = nbi(); x._copyTo(r); this.reduce(r); return r; }
+ }
+
+ function barrettRevert(x) { return x; }
+
+ // x = x mod m (HAC 14.42)
+ function barrettReduce(x) {
+ x._drShiftTo(this.m.t-1,this.r2);
+ if(x.t > this.m.t+1) { x.t = this.m.t+1; x._clamp(); }
+ this.mu._multiplyUpperTo(this.r2,this.m.t+1,this.q3);
+ this.m._multiplyLowerTo(this.q3,this.m.t+1,this.r2);
+ while(x.compareTo(this.r2) < 0) x._dAddOffset(1,this.m.t+1);
+ x._subTo(this.r2,x);
+ while(x.compareTo(this.m) >= 0) x._subTo(this.m,x);
+ }
+
+ // r = x^2 mod m; x != r
+ function barrettSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
+
+ // r = x*y mod m; x,y != r
+ function barrettMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
+
+ Barrett.prototype.convert = barrettConvert;
+ Barrett.prototype.revert = barrettRevert;
+ Barrett.prototype.reduce = barrettReduce;
+ Barrett.prototype.mulTo = barrettMulTo;
+ Barrett.prototype.sqrTo = barrettSqrTo;
+
+ // (public) this^e % m (HAC 14.85)
+ function bnModPow(e,m) {
+ var i = e.bitLength(), k, r = nbv(1), z;
+ if(i <= 0) return r;
+ else if(i < 18) k = 1;
+ else if(i < 48) k = 3;
+ else if(i < 144) k = 4;
+ else if(i < 768) k = 5;
+ else k = 6;
+ if(i < 8)
+ z = new Classic(m);
+ else if(m._isEven())
+ z = new Barrett(m);
+ else
+ z = new Montgomery(m);
+
+ // precomputation
+ var g = [], n = 3, k1 = k-1, km = (1<<k)-1;
+ g[1] = z.convert(this);
+ if(k > 1) {
+ var g2 = nbi();
+ z.sqrTo(g[1],g2);
+ while(n <= km) {
+ g[n] = nbi();
+ z.mulTo(g2,g[n-2],g[n]);
+ n += 2;
+ }
+ }
+
+ var j = e.t-1, w, is1 = true, r2 = nbi(), t;
+ i = nbits(e[j])-1;
+ while(j >= 0) {
+ if(i >= k1) w = (e[j]>>(i-k1))&km;
+ else {
+ w = (e[j]&((1<<(i+1))-1))<<(k1-i);
+ if(j > 0) w |= e[j-1]>>(this._DB+i-k1);
+ }
+
+ n = k;
+ while((w&1) == 0) { w >>= 1; --n; }
+ if((i -= n) < 0) { i += this._DB; --j; }
+ if(is1) { // ret == 1, don't bother squaring or multiplying it
+ g[w]._copyTo(r);
+ is1 = false;
+ }
+ else {
+ while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
+ if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
+ z.mulTo(r2,g[w],r);
+ }
+
+ while(j >= 0 && (e[j]&(1<<i)) == 0) {
+ z.sqrTo(r,r2); t = r; r = r2; r2 = t;
+ if(--i < 0) { i = this._DB-1; --j; }
+ }
+ }
+ return z.revert(r);
+ }
+
+ // (public) gcd(this,a) (HAC 14.54)
+ function bnGCD(a) {
+ var x = (this.s<0)?this.negate():this.clone();
+ var y = (a.s<0)?a.negate():a.clone();
+ if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
+ var i = x.getLowestSetBit(), g = y.getLowestSetBit();
+ if(g < 0) return x;
+ if(i < g) g = i;
+ if(g > 0) {
+ x._rShiftTo(g,x);
+ y._rShiftTo(g,y);
+ }
+ while(x.signum() > 0) {
+ if((i = x.getLowestSetBit()) > 0) x._rShiftTo(i,x);
+ if((i = y.getLowestSetBit()) > 0) y._rShiftTo(i,y);
+ if(x.compareTo(y) >= 0) {
+ x._subTo(y,x);
+ x._rShiftTo(1,x);
+ }
+ else {
+ y._subTo(x,y);
+ y._rShiftTo(1,y);
+ }
+ }
+ if(g > 0) y._lShiftTo(g,y);
+ return y;
+ }
+
+ // (protected) this % n, n < 2^26
+ function bnpModInt(n) {
+ if(n <= 0) return 0;
+ var d = this._DV%n, r = (this.s<0)?n-1:0;
+ if(this.t > 0)
+ if(d == 0) r = this[0]%n;
+ else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
+ return r;
+ }
+
+ // (public) 1/this % m (HAC 14.61)
+ function bnModInverse(m) {
+ var ac = m._isEven();
+ if((this._isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
+ var u = m.clone(), v = this.clone();
+ var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
+ while(u.signum() != 0) {
+ while(u._isEven()) {
+ u._rShiftTo(1,u);
+ if(ac) {
+ if(!a._isEven() || !b._isEven()) { a._addTo(this,a); b._subTo(m,b); }
+ a._rShiftTo(1,a);
+ }
+ else if(!b._isEven()) b._subTo(m,b);
+ b._rShiftTo(1,b);
+ }
+ while(v._isEven()) {
+ v._rShiftTo(1,v);
+ if(ac) {
+ if(!c._isEven() || !d._isEven()) { c._addTo(this,c); d._subTo(m,d); }
+ c._rShiftTo(1,c);
+ }
+ else if(!d._isEven()) d._subTo(m,d);
+ d._rShiftTo(1,d);
+ }
+ if(u.compareTo(v) >= 0) {
+ u._subTo(v,u);
+ if(ac) a._subTo(c,a);
+ b._subTo(d,b);
+ }
+ else {
+ v._subTo(u,v);
+ if(ac) c._subTo(a,c);
+ d._subTo(b,d);
+ }
+ }
+ if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
+ if(d.compareTo(m) >= 0) return d.subtract(m);
+ if(d.signum() < 0) d._addTo(m,d); else return d;
+ if(d.signum() < 0) return d.add(m); else return d;
+ }
+
+ var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
+ var lplim = (1<<26)/lowprimes[lowprimes.length-1];
+
+ // (public) test primality with certainty >= 1-.5^t
+ function bnIsProbablePrime(t) {
+ var i, x = this.abs();
+ if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
+ for(i = 0; i < lowprimes.length; ++i)
+ if(x[0] == lowprimes[i]) return true;
+ return false;
+ }
+ if(x._isEven()) return false;
+ i = 1;
+ while(i < lowprimes.length) {
+ var m = lowprimes[i], j = i+1;
+ while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
+ m = x._modInt(m);
+ while(i < j) if(m%lowprimes[i++] == 0) return false;
+ }
+ return x._millerRabin(t);
+ }
+
+ // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
+ function bnpMillerRabin(t) {
+ var n1 = this.subtract(BigInteger.ONE);
+ var k = n1.getLowestSetBit();
+ if(k <= 0) return false;
+ var r = n1.shiftRight(k);
+ t = (t+1)>>1;
+ if(t > lowprimes.length) t = lowprimes.length;
+ var a = nbi();
+ for(var i = 0; i < t; ++i) {
+ a._fromInt(lowprimes[i]);
+ var y = a.modPow(r,this);
+ if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
+ var j = 1;
+ while(j++ < k && y.compareTo(n1) != 0) {
+ y = y.modPowInt(2,this);
+ if(y.compareTo(BigInteger.ONE) == 0) return false;
+ }
+ if(y.compareTo(n1) != 0) return false;
+ }
+ }
+ return true;
+ }
+
+ dojo.extend(BigInteger, {
+ // protected
+ _chunkSize: bnpChunkSize,
+ _toRadix: bnpToRadix,
+ _fromRadix: bnpFromRadix,
+ _fromNumber: bnpFromNumber,
+ _bitwiseTo: bnpBitwiseTo,
+ _changeBit: bnpChangeBit,
+ _addTo: bnpAddTo,
+ _dMultiply: bnpDMultiply,
+ _dAddOffset: bnpDAddOffset,
+ _multiplyLowerTo: bnpMultiplyLowerTo,
+ _multiplyUpperTo: bnpMultiplyUpperTo,
+ _modInt: bnpModInt,
+ _millerRabin: bnpMillerRabin,
+
+ // public
+ clone: bnClone,
+ intValue: bnIntValue,
+ byteValue: bnByteValue,
+ shortValue: bnShortValue,
+ signum: bnSigNum,
+ toByteArray: bnToByteArray,
+ equals: bnEquals,
+ min: bnMin,
+ max: bnMax,
+ and: bnAnd,
+ or: bnOr,
+ xor: bnXor,
+ andNot: bnAndNot,
+ not: bnNot,
+ shiftLeft: bnShiftLeft,
+ shiftRight: bnShiftRight,
+ getLowestSetBit: bnGetLowestSetBit,
+ bitCount: bnBitCount,
+ testBit: bnTestBit,
+ setBit: bnSetBit,
+ clearBit: bnClearBit,
+ flipBit: bnFlipBit,
+ add: bnAdd,
+ subtract: bnSubtract,
+ multiply: bnMultiply,
+ divide: bnDivide,
+ remainder: bnRemainder,
+ divideAndRemainder: bnDivideAndRemainder,
+ modPow: bnModPow,
+ modInverse: bnModInverse,
+ pow: bnPow,
+ gcd: bnGCD,
+ isProbablePrime: bnIsProbablePrime
+ });
+
+ // BigInteger interfaces not implemented in jsbn:
+
+ // BigInteger(int signum, byte[] magnitude)
+ // double doubleValue()
+ // float floatValue()
+ // int hashCode()
+ // long longValue()
+ // static BigInteger valueOf(long val)
+
+})();
+
+}
diff --git a/js/dojo-1.6/dojox/math/BigInteger-ext.xd.js b/js/dojo-1.6/dojox/math/BigInteger-ext.xd.js
new file mode 100644
index 0000000..bbcf80a
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/BigInteger-ext.xd.js
@@ -0,0 +1,675 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.BigInteger-ext"],
+["require", "dojox.math.BigInteger"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.BigInteger-ext"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.BigInteger-ext"] = true;
+dojo.provide("dojox.math.BigInteger-ext");
+dojo.require("dojox.math.BigInteger");
+
+
+dojo.experimental("dojox.math.BigInteger-ext");
+
+// Contributed under CLA by Tom Wu
+
+// Extended JavaScript BN functions, required for RSA private ops.
+
+(function(){
+ var BigInteger = dojox.math.BigInteger,
+ nbi = BigInteger._nbi, nbv = BigInteger._nbv,
+ nbits = BigInteger._nbits,
+ Montgomery = BigInteger._Montgomery;
+
+ // (public)
+ function bnClone() { var r = nbi(); this._copyTo(r); return r; }
+
+ // (public) return value as integer
+ function bnIntValue() {
+ if(this.s < 0) {
+ if(this.t == 1) return this[0]-this._DV;
+ else if(this.t == 0) return -1;
+ }
+ else if(this.t == 1) return this[0];
+ else if(this.t == 0) return 0;
+ // assumes 16 < DB < 32
+ return ((this[1]&((1<<(32-this._DB))-1))<<this._DB)|this[0];
+ }
+
+ // (public) return value as byte
+ function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
+
+ // (public) return value as short (assumes DB>=16)
+ function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
+
+ // (protected) return x s.t. r^x < DV
+ function bnpChunkSize(r) { return Math.floor(Math.LN2*this._DB/Math.log(r)); }
+
+ // (public) 0 if this == 0, 1 if this > 0
+ function bnSigNum() {
+ if(this.s < 0) return -1;
+ else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
+ else return 1;
+ }
+
+ // (protected) convert to radix string
+ function bnpToRadix(b) {
+ if(b == null) b = 10;
+ if(this.signum() == 0 || b < 2 || b > 36) return "0";
+ var cs = this._chunkSize(b);
+ var a = Math.pow(b,cs);
+ var d = nbv(a), y = nbi(), z = nbi(), r = "";
+ this._divRemTo(d,y,z);
+ while(y.signum() > 0) {
+ r = (a+z.intValue()).toString(b).substr(1) + r;
+ y._divRemTo(d,y,z);
+ }
+ return z.intValue().toString(b) + r;
+ }
+
+ // (protected) convert from radix string
+ function bnpFromRadix(s,b) {
+ this._fromInt(0);
+ if(b == null) b = 10;
+ var cs = this._chunkSize(b);
+ var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
+ for(var i = 0; i < s.length; ++i) {
+ var x = intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
+ continue;
+ }
+ w = b*w+x;
+ if(++j >= cs) {
+ this._dMultiply(d);
+ this._dAddOffset(w,0);
+ j = 0;
+ w = 0;
+ }
+ }
+ if(j > 0) {
+ this._dMultiply(Math.pow(b,j));
+ this._dAddOffset(w,0);
+ }
+ if(mi) BigInteger.ZERO._subTo(this,this);
+ }
+
+ // (protected) alternate constructor
+ function bnpFromNumber(a,b,c) {
+ if("number" == typeof b) {
+ // new BigInteger(int,int,RNG)
+ if(a < 2) this._fromInt(1);
+ else {
+ this._fromNumber(a,c);
+ if(!this.testBit(a-1)) // force MSB set
+ this._bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
+ if(this._isEven()) this._dAddOffset(1,0); // force odd
+ while(!this.isProbablePrime(b)) {
+ this._dAddOffset(2,0);
+ if(this.bitLength() > a) this._subTo(BigInteger.ONE.shiftLeft(a-1),this);
+ }
+ }
+ }
+ else {
+ // new BigInteger(int,RNG)
+ var x = [], t = a&7;
+ x.length = (a>>3)+1;
+ b.nextBytes(x);
+ if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
+ this._fromString(x,256);
+ }
+ }
+
+ // (public) convert to bigendian byte array
+ function bnToByteArray() {
+ var i = this.t, r = [];
+ r[0] = this.s;
+ var p = this._DB-(i*this._DB)%8, d, k = 0;
+ if(i-- > 0) {
+ if(p < this._DB && (d = this[i]>>p) != (this.s&this._DM)>>p)
+ r[k++] = d|(this.s<<(this._DB-p));
+ while(i >= 0) {
+ if(p < 8) {
+ d = (this[i]&((1<<p)-1))<<(8-p);
+ d |= this[--i]>>(p+=this._DB-8);
+ }
+ else {
+ d = (this[i]>>(p-=8))&0xff;
+ if(p <= 0) { p += this._DB; --i; }
+ }
+ if((d&0x80) != 0) d |= -256;
+ if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
+ if(k > 0 || d != this.s) r[k++] = d;
+ }
+ }
+ return r;
+ }
+
+ function bnEquals(a) { return(this.compareTo(a)==0); }
+ function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
+ function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
+
+ // (protected) r = this op a (bitwise)
+ function bnpBitwiseTo(a,op,r) {
+ var i, f, m = Math.min(a.t,this.t);
+ for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
+ if(a.t < this.t) {
+ f = a.s&this._DM;
+ for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
+ r.t = this.t;
+ }
+ else {
+ f = this.s&this._DM;
+ for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
+ r.t = a.t;
+ }
+ r.s = op(this.s,a.s);
+ r._clamp();
+ }
+
+ // (public) this & a
+ function op_and(x,y) { return x&y; }
+ function bnAnd(a) { var r = nbi(); this._bitwiseTo(a,op_and,r); return r; }
+
+ // (public) this | a
+ function op_or(x,y) { return x|y; }
+ function bnOr(a) { var r = nbi(); this._bitwiseTo(a,op_or,r); return r; }
+
+ // (public) this ^ a
+ function op_xor(x,y) { return x^y; }
+ function bnXor(a) { var r = nbi(); this._bitwiseTo(a,op_xor,r); return r; }
+
+ // (public) this & ~a
+ function op_andnot(x,y) { return x&~y; }
+ function bnAndNot(a) { var r = nbi(); this._bitwiseTo(a,op_andnot,r); return r; }
+
+ // (public) ~this
+ function bnNot() {
+ var r = nbi();
+ for(var i = 0; i < this.t; ++i) r[i] = this._DM&~this[i];
+ r.t = this.t;
+ r.s = ~this.s;
+ return r;
+ }
+
+ // (public) this << n
+ function bnShiftLeft(n) {
+ var r = nbi();
+ if(n < 0) this._rShiftTo(-n,r); else this._lShiftTo(n,r);
+ return r;
+ }
+
+ // (public) this >> n
+ function bnShiftRight(n) {
+ var r = nbi();
+ if(n < 0) this._lShiftTo(-n,r); else this._rShiftTo(n,r);
+ return r;
+ }
+
+ // return index of lowest 1-bit in x, x < 2^31
+ function lbit(x) {
+ if(x == 0) return -1;
+ var r = 0;
+ if((x&0xffff) == 0) { x >>= 16; r += 16; }
+ if((x&0xff) == 0) { x >>= 8; r += 8; }
+ if((x&0xf) == 0) { x >>= 4; r += 4; }
+ if((x&3) == 0) { x >>= 2; r += 2; }
+ if((x&1) == 0) ++r;
+ return r;
+ }
+
+ // (public) returns index of lowest 1-bit (or -1 if none)
+ function bnGetLowestSetBit() {
+ for(var i = 0; i < this.t; ++i)
+ if(this[i] != 0) return i*this._DB+lbit(this[i]);
+ if(this.s < 0) return this.t*this._DB;
+ return -1;
+ }
+
+ // return number of 1 bits in x
+ function cbit(x) {
+ var r = 0;
+ while(x != 0) { x &= x-1; ++r; }
+ return r;
+ }
+
+ // (public) return number of set bits
+ function bnBitCount() {
+ var r = 0, x = this.s&this._DM;
+ for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
+ return r;
+ }
+
+ // (public) true iff nth bit is set
+ function bnTestBit(n) {
+ var j = Math.floor(n/this._DB);
+ if(j >= this.t) return(this.s!=0);
+ return((this[j]&(1<<(n%this._DB)))!=0);
+ }
+
+ // (protected) this op (1<<n)
+ function bnpChangeBit(n,op) {
+ var r = BigInteger.ONE.shiftLeft(n);
+ this._bitwiseTo(r,op,r);
+ return r;
+ }
+
+ // (public) this | (1<<n)
+ function bnSetBit(n) { return this._changeBit(n,op_or); }
+
+ // (public) this & ~(1<<n)
+ function bnClearBit(n) { return this._changeBit(n,op_andnot); }
+
+ // (public) this ^ (1<<n)
+ function bnFlipBit(n) { return this._changeBit(n,op_xor); }
+
+ // (protected) r = this + a
+ function bnpAddTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]+a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ if(a.t < this.t) {
+ c += a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c += a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c += a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c > 0) r[i++] = c;
+ else if(c < -1) r[i++] = this._DV+c;
+ r.t = i;
+ r._clamp();
+ }
+
+ // (public) this + a
+ function bnAdd(a) { var r = nbi(); this._addTo(a,r); return r; }
+
+ // (public) this - a
+ function bnSubtract(a) { var r = nbi(); this._subTo(a,r); return r; }
+
+ // (public) this * a
+ function bnMultiply(a) { var r = nbi(); this._multiplyTo(a,r); return r; }
+
+ // (public) this / a
+ function bnDivide(a) { var r = nbi(); this._divRemTo(a,r,null); return r; }
+
+ // (public) this % a
+ function bnRemainder(a) { var r = nbi(); this._divRemTo(a,null,r); return r; }
+
+ // (public) [this/a,this%a]
+ function bnDivideAndRemainder(a) {
+ var q = nbi(), r = nbi();
+ this._divRemTo(a,q,r);
+ return [q, r];
+ }
+
+ // (protected) this *= n, this >= 0, 1 < n < DV
+ function bnpDMultiply(n) {
+ this[this.t] = this.am(0,n-1,this,0,0,this.t);
+ ++this.t;
+ this._clamp();
+ }
+
+ // (protected) this += n << w words, this >= 0
+ function bnpDAddOffset(n,w) {
+ while(this.t <= w) this[this.t++] = 0;
+ this[w] += n;
+ while(this[w] >= this._DV) {
+ this[w] -= this._DV;
+ if(++w >= this.t) this[this.t++] = 0;
+ ++this[w];
+ }
+ }
+
+ // A "null" reducer
+ function NullExp() {}
+ function nNop(x) { return x; }
+ function nMulTo(x,y,r) { x._multiplyTo(y,r); }
+ function nSqrTo(x,r) { x._squareTo(r); }
+
+ NullExp.prototype.convert = nNop;
+ NullExp.prototype.revert = nNop;
+ NullExp.prototype.mulTo = nMulTo;
+ NullExp.prototype.sqrTo = nSqrTo;
+
+ // (public) this^e
+ function bnPow(e) { return this._exp(e,new NullExp()); }
+
+ // (protected) r = lower n words of "this * a", a.t <= n
+ // "this" should be the larger one if appropriate.
+ function bnpMultiplyLowerTo(a,n,r) {
+ var i = Math.min(this.t+a.t,n);
+ r.s = 0; // assumes a,this >= 0
+ r.t = i;
+ while(i > 0) r[--i] = 0;
+ var j;
+ for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
+ for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
+ r._clamp();
+ }
+
+ // (protected) r = "this * a" without lower n words, n > 0
+ // "this" should be the larger one if appropriate.
+ function bnpMultiplyUpperTo(a,n,r) {
+ --n;
+ var i = r.t = this.t+a.t-n;
+ r.s = 0; // assumes a,this >= 0
+ while(--i >= 0) r[i] = 0;
+ for(i = Math.max(n-this.t,0); i < a.t; ++i)
+ r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
+ r._clamp();
+ r._drShiftTo(1,r);
+ }
+
+ // Barrett modular reduction
+ function Barrett(m) {
+ // setup Barrett
+ this.r2 = nbi();
+ this.q3 = nbi();
+ BigInteger.ONE._dlShiftTo(2*m.t,this.r2);
+ this.mu = this.r2.divide(m);
+ this.m = m;
+ }
+
+ function barrettConvert(x) {
+ if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
+ else if(x.compareTo(this.m) < 0) return x;
+ else { var r = nbi(); x._copyTo(r); this.reduce(r); return r; }
+ }
+
+ function barrettRevert(x) { return x; }
+
+ // x = x mod m (HAC 14.42)
+ function barrettReduce(x) {
+ x._drShiftTo(this.m.t-1,this.r2);
+ if(x.t > this.m.t+1) { x.t = this.m.t+1; x._clamp(); }
+ this.mu._multiplyUpperTo(this.r2,this.m.t+1,this.q3);
+ this.m._multiplyLowerTo(this.q3,this.m.t+1,this.r2);
+ while(x.compareTo(this.r2) < 0) x._dAddOffset(1,this.m.t+1);
+ x._subTo(this.r2,x);
+ while(x.compareTo(this.m) >= 0) x._subTo(this.m,x);
+ }
+
+ // r = x^2 mod m; x != r
+ function barrettSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
+
+ // r = x*y mod m; x,y != r
+ function barrettMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
+
+ Barrett.prototype.convert = barrettConvert;
+ Barrett.prototype.revert = barrettRevert;
+ Barrett.prototype.reduce = barrettReduce;
+ Barrett.prototype.mulTo = barrettMulTo;
+ Barrett.prototype.sqrTo = barrettSqrTo;
+
+ // (public) this^e % m (HAC 14.85)
+ function bnModPow(e,m) {
+ var i = e.bitLength(), k, r = nbv(1), z;
+ if(i <= 0) return r;
+ else if(i < 18) k = 1;
+ else if(i < 48) k = 3;
+ else if(i < 144) k = 4;
+ else if(i < 768) k = 5;
+ else k = 6;
+ if(i < 8)
+ z = new Classic(m);
+ else if(m._isEven())
+ z = new Barrett(m);
+ else
+ z = new Montgomery(m);
+
+ // precomputation
+ var g = [], n = 3, k1 = k-1, km = (1<<k)-1;
+ g[1] = z.convert(this);
+ if(k > 1) {
+ var g2 = nbi();
+ z.sqrTo(g[1],g2);
+ while(n <= km) {
+ g[n] = nbi();
+ z.mulTo(g2,g[n-2],g[n]);
+ n += 2;
+ }
+ }
+
+ var j = e.t-1, w, is1 = true, r2 = nbi(), t;
+ i = nbits(e[j])-1;
+ while(j >= 0) {
+ if(i >= k1) w = (e[j]>>(i-k1))&km;
+ else {
+ w = (e[j]&((1<<(i+1))-1))<<(k1-i);
+ if(j > 0) w |= e[j-1]>>(this._DB+i-k1);
+ }
+
+ n = k;
+ while((w&1) == 0) { w >>= 1; --n; }
+ if((i -= n) < 0) { i += this._DB; --j; }
+ if(is1) { // ret == 1, don't bother squaring or multiplying it
+ g[w]._copyTo(r);
+ is1 = false;
+ }
+ else {
+ while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
+ if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
+ z.mulTo(r2,g[w],r);
+ }
+
+ while(j >= 0 && (e[j]&(1<<i)) == 0) {
+ z.sqrTo(r,r2); t = r; r = r2; r2 = t;
+ if(--i < 0) { i = this._DB-1; --j; }
+ }
+ }
+ return z.revert(r);
+ }
+
+ // (public) gcd(this,a) (HAC 14.54)
+ function bnGCD(a) {
+ var x = (this.s<0)?this.negate():this.clone();
+ var y = (a.s<0)?a.negate():a.clone();
+ if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
+ var i = x.getLowestSetBit(), g = y.getLowestSetBit();
+ if(g < 0) return x;
+ if(i < g) g = i;
+ if(g > 0) {
+ x._rShiftTo(g,x);
+ y._rShiftTo(g,y);
+ }
+ while(x.signum() > 0) {
+ if((i = x.getLowestSetBit()) > 0) x._rShiftTo(i,x);
+ if((i = y.getLowestSetBit()) > 0) y._rShiftTo(i,y);
+ if(x.compareTo(y) >= 0) {
+ x._subTo(y,x);
+ x._rShiftTo(1,x);
+ }
+ else {
+ y._subTo(x,y);
+ y._rShiftTo(1,y);
+ }
+ }
+ if(g > 0) y._lShiftTo(g,y);
+ return y;
+ }
+
+ // (protected) this % n, n < 2^26
+ function bnpModInt(n) {
+ if(n <= 0) return 0;
+ var d = this._DV%n, r = (this.s<0)?n-1:0;
+ if(this.t > 0)
+ if(d == 0) r = this[0]%n;
+ else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
+ return r;
+ }
+
+ // (public) 1/this % m (HAC 14.61)
+ function bnModInverse(m) {
+ var ac = m._isEven();
+ if((this._isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
+ var u = m.clone(), v = this.clone();
+ var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
+ while(u.signum() != 0) {
+ while(u._isEven()) {
+ u._rShiftTo(1,u);
+ if(ac) {
+ if(!a._isEven() || !b._isEven()) { a._addTo(this,a); b._subTo(m,b); }
+ a._rShiftTo(1,a);
+ }
+ else if(!b._isEven()) b._subTo(m,b);
+ b._rShiftTo(1,b);
+ }
+ while(v._isEven()) {
+ v._rShiftTo(1,v);
+ if(ac) {
+ if(!c._isEven() || !d._isEven()) { c._addTo(this,c); d._subTo(m,d); }
+ c._rShiftTo(1,c);
+ }
+ else if(!d._isEven()) d._subTo(m,d);
+ d._rShiftTo(1,d);
+ }
+ if(u.compareTo(v) >= 0) {
+ u._subTo(v,u);
+ if(ac) a._subTo(c,a);
+ b._subTo(d,b);
+ }
+ else {
+ v._subTo(u,v);
+ if(ac) c._subTo(a,c);
+ d._subTo(b,d);
+ }
+ }
+ if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
+ if(d.compareTo(m) >= 0) return d.subtract(m);
+ if(d.signum() < 0) d._addTo(m,d); else return d;
+ if(d.signum() < 0) return d.add(m); else return d;
+ }
+
+ var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
+ var lplim = (1<<26)/lowprimes[lowprimes.length-1];
+
+ // (public) test primality with certainty >= 1-.5^t
+ function bnIsProbablePrime(t) {
+ var i, x = this.abs();
+ if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
+ for(i = 0; i < lowprimes.length; ++i)
+ if(x[0] == lowprimes[i]) return true;
+ return false;
+ }
+ if(x._isEven()) return false;
+ i = 1;
+ while(i < lowprimes.length) {
+ var m = lowprimes[i], j = i+1;
+ while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
+ m = x._modInt(m);
+ while(i < j) if(m%lowprimes[i++] == 0) return false;
+ }
+ return x._millerRabin(t);
+ }
+
+ // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
+ function bnpMillerRabin(t) {
+ var n1 = this.subtract(BigInteger.ONE);
+ var k = n1.getLowestSetBit();
+ if(k <= 0) return false;
+ var r = n1.shiftRight(k);
+ t = (t+1)>>1;
+ if(t > lowprimes.length) t = lowprimes.length;
+ var a = nbi();
+ for(var i = 0; i < t; ++i) {
+ a._fromInt(lowprimes[i]);
+ var y = a.modPow(r,this);
+ if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
+ var j = 1;
+ while(j++ < k && y.compareTo(n1) != 0) {
+ y = y.modPowInt(2,this);
+ if(y.compareTo(BigInteger.ONE) == 0) return false;
+ }
+ if(y.compareTo(n1) != 0) return false;
+ }
+ }
+ return true;
+ }
+
+ dojo.extend(BigInteger, {
+ // protected
+ _chunkSize: bnpChunkSize,
+ _toRadix: bnpToRadix,
+ _fromRadix: bnpFromRadix,
+ _fromNumber: bnpFromNumber,
+ _bitwiseTo: bnpBitwiseTo,
+ _changeBit: bnpChangeBit,
+ _addTo: bnpAddTo,
+ _dMultiply: bnpDMultiply,
+ _dAddOffset: bnpDAddOffset,
+ _multiplyLowerTo: bnpMultiplyLowerTo,
+ _multiplyUpperTo: bnpMultiplyUpperTo,
+ _modInt: bnpModInt,
+ _millerRabin: bnpMillerRabin,
+
+ // public
+ clone: bnClone,
+ intValue: bnIntValue,
+ byteValue: bnByteValue,
+ shortValue: bnShortValue,
+ signum: bnSigNum,
+ toByteArray: bnToByteArray,
+ equals: bnEquals,
+ min: bnMin,
+ max: bnMax,
+ and: bnAnd,
+ or: bnOr,
+ xor: bnXor,
+ andNot: bnAndNot,
+ not: bnNot,
+ shiftLeft: bnShiftLeft,
+ shiftRight: bnShiftRight,
+ getLowestSetBit: bnGetLowestSetBit,
+ bitCount: bnBitCount,
+ testBit: bnTestBit,
+ setBit: bnSetBit,
+ clearBit: bnClearBit,
+ flipBit: bnFlipBit,
+ add: bnAdd,
+ subtract: bnSubtract,
+ multiply: bnMultiply,
+ divide: bnDivide,
+ remainder: bnRemainder,
+ divideAndRemainder: bnDivideAndRemainder,
+ modPow: bnModPow,
+ modInverse: bnModInverse,
+ pow: bnPow,
+ gcd: bnGCD,
+ isProbablePrime: bnIsProbablePrime
+ });
+
+ // BigInteger interfaces not implemented in jsbn:
+
+ // BigInteger(int signum, byte[] magnitude)
+ // double doubleValue()
+ // float floatValue()
+ // int hashCode()
+ // long longValue()
+ // static BigInteger valueOf(long val)
+
+})();
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/BigInteger.js b/js/dojo-1.6/dojox/math/BigInteger.js
new file mode 100644
index 0000000..e4bbf46
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/BigInteger.js
@@ -0,0 +1,600 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.BigInteger"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.BigInteger"] = true;
+dojo.provide("dojox.math.BigInteger");
+
+
+dojo.getObject("math.BigInteger", true, dojox);
+dojo.experimental("dojox.math.BigInteger");
+
+// Contributed under CLA by Tom Wu <tjw@cs.Stanford.EDU>
+// See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details.
+
+// Basic JavaScript BN library - subset useful for RSA encryption.
+// The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java.
+
+(function(){
+
+ // Bits per digit
+ var dbits;
+
+ // JavaScript engine analysis
+ var canary = 0xdeadbeefcafe;
+ var j_lm = ((canary&0xffffff)==0xefcafe);
+
+ // (public) Constructor
+ function BigInteger(a,b,c) {
+ if(a != null)
+ if("number" == typeof a) this._fromNumber(a,b,c);
+ else if(!b && "string" != typeof a) this._fromString(a,256);
+ else this._fromString(a,b);
+ }
+
+ // return new, unset BigInteger
+ function nbi() { return new BigInteger(null); }
+
+ // am: Compute w_j += (x*this_i), propagate carries,
+ // c is initial carry, returns final carry.
+ // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
+ // We need to select the fastest one that works in this environment.
+
+ // am1: use a single mult and divide to get the high bits,
+ // max digit bits should be 26 because
+ // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
+ function am1(i,x,w,j,c,n) {
+ while(--n >= 0) {
+ var v = x*this[i++]+w[j]+c;
+ c = Math.floor(v/0x4000000);
+ w[j++] = v&0x3ffffff;
+ }
+ return c;
+ }
+ // am2 avoids a big mult-and-extract completely.
+ // Max digit bits should be <= 30 because we do bitwise ops
+ // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
+ function am2(i,x,w,j,c,n) {
+ var xl = x&0x7fff, xh = x>>15;
+ while(--n >= 0) {
+ var l = this[i]&0x7fff;
+ var h = this[i++]>>15;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
+ c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
+ w[j++] = l&0x3fffffff;
+ }
+ return c;
+ }
+ // Alternately, set max digit bits to 28 since some
+ // browsers slow down when dealing with 32-bit numbers.
+ function am3(i,x,w,j,c,n) {
+ var xl = x&0x3fff, xh = x>>14;
+ while(--n >= 0) {
+ var l = this[i]&0x3fff;
+ var h = this[i++]>>14;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x3fff)<<14)+w[j]+c;
+ c = (l>>28)+(m>>14)+xh*h;
+ w[j++] = l&0xfffffff;
+ }
+ return c;
+ }
+ if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
+ BigInteger.prototype.am = am2;
+ dbits = 30;
+ }
+ else if(j_lm && (navigator.appName != "Netscape")) {
+ BigInteger.prototype.am = am1;
+ dbits = 26;
+ }
+ else { // Mozilla/Netscape seems to prefer am3
+ BigInteger.prototype.am = am3;
+ dbits = 28;
+ }
+
+ var BI_FP = 52;
+
+ // Digit conversions
+ var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
+ var BI_RC = [];
+ var rr,vv;
+ rr = "0".charCodeAt(0);
+ for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
+ rr = "a".charCodeAt(0);
+ for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+ rr = "A".charCodeAt(0);
+ for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+
+ function int2char(n) { return BI_RM.charAt(n); }
+ function intAt(s,i) {
+ var c = BI_RC[s.charCodeAt(i)];
+ return (c==null)?-1:c;
+ }
+
+ // (protected) copy this to r
+ function bnpCopyTo(r) {
+ for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
+ r.t = this.t;
+ r.s = this.s;
+ }
+
+ // (protected) set from integer value x, -DV <= x < DV
+ function bnpFromInt(x) {
+ this.t = 1;
+ this.s = (x<0)?-1:0;
+ if(x > 0) this[0] = x;
+ else if(x < -1) this[0] = x+_DV;
+ else this.t = 0;
+ }
+
+ // return bigint initialized to value
+ function nbv(i) { var r = nbi(); r._fromInt(i); return r; }
+
+ // (protected) set from string and radix
+ function bnpFromString(s,b) {
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 256) k = 8; // byte array
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else { this.fromRadix(s,b); return; }
+ this.t = 0;
+ this.s = 0;
+ var i = s.length, mi = false, sh = 0;
+ while(--i >= 0) {
+ var x = (k==8)?s[i]&0xff:intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-") mi = true;
+ continue;
+ }
+ mi = false;
+ if(sh == 0)
+ this[this.t++] = x;
+ else if(sh+k > this._DB) {
+ this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<<sh;
+ this[this.t++] = (x>>(this._DB-sh));
+ }
+ else
+ this[this.t-1] |= x<<sh;
+ sh += k;
+ if(sh >= this._DB) sh -= this._DB;
+ }
+ if(k == 8 && (s[0]&0x80) != 0) {
+ this.s = -1;
+ if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)<<sh;
+ }
+ this._clamp();
+ if(mi) BigInteger.ZERO._subTo(this,this);
+ }
+
+ // (protected) clamp off excess high words
+ function bnpClamp() {
+ var c = this.s&this._DM;
+ while(this.t > 0 && this[this.t-1] == c) --this.t;
+ }
+
+ // (public) return string representation in given radix
+ function bnToString(b) {
+ if(this.s < 0) return "-"+this.negate().toString(b);
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else return this._toRadix(b);
+ var km = (1<<k)-1, d, m = false, r = "", i = this.t;
+ var p = this._DB-(i*this._DB)%k;
+ if(i-- > 0) {
+ if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
+ while(i >= 0) {
+ if(p < k) {
+ d = (this[i]&((1<<p)-1))<<(k-p);
+ d |= this[--i]>>(p+=this._DB-k);
+ }
+ else {
+ d = (this[i]>>(p-=k))&km;
+ if(p <= 0) { p += this._DB; --i; }
+ }
+ if(d > 0) m = true;
+ if(m) r += int2char(d);
+ }
+ }
+ return m?r:"0";
+ }
+
+ // (public) -this
+ function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; }
+
+ // (public) |this|
+ function bnAbs() { return (this.s<0)?this.negate():this; }
+
+ // (public) return + if this > a, - if this < a, 0 if equal
+ function bnCompareTo(a) {
+ var r = this.s-a.s;
+ if(r) return r;
+ var i = this.t;
+ r = i-a.t;
+ if(r) return r;
+ while(--i >= 0) if((r = this[i] - a[i])) return r;
+ return 0;
+ }
+
+ // returns bit length of the integer x
+ function nbits(x) {
+ var r = 1, t;
+ if((t=x>>>16)) { x = t; r += 16; }
+ if((t=x>>8)) { x = t; r += 8; }
+ if((t=x>>4)) { x = t; r += 4; }
+ if((t=x>>2)) { x = t; r += 2; }
+ if((t=x>>1)) { x = t; r += 1; }
+ return r;
+ }
+
+ // (public) return the number of bits in "this"
+ function bnBitLength() {
+ if(this.t <= 0) return 0;
+ return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM));
+ }
+
+ // (protected) r = this << n*DB
+ function bnpDLShiftTo(n,r) {
+ var i;
+ for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
+ for(i = n-1; i >= 0; --i) r[i] = 0;
+ r.t = this.t+n;
+ r.s = this.s;
+ }
+
+ // (protected) r = this >> n*DB
+ function bnpDRShiftTo(n,r) {
+ for(var i = n; i < this.t; ++i) r[i-n] = this[i];
+ r.t = Math.max(this.t-n,0);
+ r.s = this.s;
+ }
+
+ // (protected) r = this << n
+ function bnpLShiftTo(n,r) {
+ var bs = n%this._DB;
+ var cbs = this._DB-bs;
+ var bm = (1<<cbs)-1;
+ var ds = Math.floor(n/this._DB), c = (this.s<<bs)&this._DM, i;
+ for(i = this.t-1; i >= 0; --i) {
+ r[i+ds+1] = (this[i]>>cbs)|c;
+ c = (this[i]&bm)<<bs;
+ }
+ for(i = ds-1; i >= 0; --i) r[i] = 0;
+ r[ds] = c;
+ r.t = this.t+ds+1;
+ r.s = this.s;
+ r._clamp();
+ }
+
+ // (protected) r = this >> n
+ function bnpRShiftTo(n,r) {
+ r.s = this.s;
+ var ds = Math.floor(n/this._DB);
+ if(ds >= this.t) { r.t = 0; return; }
+ var bs = n%this._DB;
+ var cbs = this._DB-bs;
+ var bm = (1<<bs)-1;
+ r[0] = this[ds]>>bs;
+ for(var i = ds+1; i < this.t; ++i) {
+ r[i-ds-1] |= (this[i]&bm)<<cbs;
+ r[i-ds] = this[i]>>bs;
+ }
+ if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
+ r.t = this.t-ds;
+ r._clamp();
+ }
+
+ // (protected) r = this - a
+ function bnpSubTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]-a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ if(a.t < this.t) {
+ c -= a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c -= a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c -= a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c < -1) r[i++] = this._DV+c;
+ else if(c > 0) r[i++] = c;
+ r.t = i;
+ r._clamp();
+ }
+
+ // (protected) r = this * a, r != this,a (HAC 14.12)
+ // "this" should be the larger one if appropriate.
+ function bnpMultiplyTo(a,r) {
+ var x = this.abs(), y = a.abs();
+ var i = x.t;
+ r.t = i+y.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
+ r.s = 0;
+ r._clamp();
+ if(this.s != a.s) BigInteger.ZERO._subTo(r,r);
+ }
+
+ // (protected) r = this^2, r != this (HAC 14.16)
+ function bnpSquareTo(r) {
+ var x = this.abs();
+ var i = r.t = 2*x.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < x.t-1; ++i) {
+ var c = x.am(i,x[i],r,2*i,0,1);
+ if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) {
+ r[i+x.t] -= x._DV;
+ r[i+x.t+1] = 1;
+ }
+ }
+ if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
+ r.s = 0;
+ r._clamp();
+ }
+
+ // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
+ // r != q, this != m. q or r may be null.
+ function bnpDivRemTo(m,q,r) {
+ var pm = m.abs();
+ if(pm.t <= 0) return;
+ var pt = this.abs();
+ if(pt.t < pm.t) {
+ if(q != null) q._fromInt(0);
+ if(r != null) this._copyTo(r);
+ return;
+ }
+ if(r == null) r = nbi();
+ var y = nbi(), ts = this.s, ms = m.s;
+ var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus
+ if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); }
+ else { pm._copyTo(y); pt._copyTo(r); }
+ var ys = y.t;
+ var y0 = y[ys-1];
+ if(y0 == 0) return;
+ var yt = y0*(1<<this._F1)+((ys>1)?y[ys-2]>>this._F2:0);
+ var d1 = this._FV/yt, d2 = (1<<this._F1)/yt, e = 1<<this._F2;
+ var i = r.t, j = i-ys, t = (q==null)?nbi():q;
+ y._dlShiftTo(j,t);
+ if(r.compareTo(t) >= 0) {
+ r[r.t++] = 1;
+ r._subTo(t,r);
+ }
+ BigInteger.ONE._dlShiftTo(ys,t);
+ t._subTo(y,y); // "negative" y so we can replace sub with am later
+ while(y.t < ys) y[y.t++] = 0;
+ while(--j >= 0) {
+ // Estimate quotient digit
+ var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
+ if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
+ y._dlShiftTo(j,t);
+ r._subTo(t,r);
+ while(r[i] < --qd) r._subTo(t,r);
+ }
+ }
+ if(q != null) {
+ r._drShiftTo(ys,q);
+ if(ts != ms) BigInteger.ZERO._subTo(q,q);
+ }
+ r.t = ys;
+ r._clamp();
+ if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder
+ if(ts < 0) BigInteger.ZERO._subTo(r,r);
+ }
+
+ // (public) this mod a
+ function bnMod(a) {
+ var r = nbi();
+ this.abs()._divRemTo(a,null,r);
+ if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r);
+ return r;
+ }
+
+ // Modular reduction using "classic" algorithm
+ function Classic(m) { this.m = m; }
+ function cConvert(x) {
+ if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
+ else return x;
+ }
+ function cRevert(x) { return x; }
+ function cReduce(x) { x._divRemTo(this.m,null,x); }
+ function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
+ function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
+
+ dojo.extend(Classic, {
+ convert: cConvert,
+ revert: cRevert,
+ reduce: cReduce,
+ mulTo: cMulTo,
+ sqrTo: cSqrTo
+ });
+
+ // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
+ // justification:
+ // xy == 1 (mod m)
+ // xy = 1+km
+ // xy(2-xy) = (1+km)(1-km)
+ // x[y(2-xy)] = 1-k^2m^2
+ // x[y(2-xy)] == 1 (mod m^2)
+ // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
+ // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
+ // JS multiply "overflows" differently from C/C++, so care is needed here.
+ function bnpInvDigit() {
+ if(this.t < 1) return 0;
+ var x = this[0];
+ if((x&1) == 0) return 0;
+ var y = x&3; // y == 1/x mod 2^2
+ y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
+ y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
+ y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
+ // last step - calculate inverse mod DV directly;
+ // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
+ y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits
+ // we really want the negative inverse, and -DV < y < DV
+ return (y>0)?this._DV-y:-y;
+ }
+
+ // Montgomery reduction
+ function Montgomery(m) {
+ this.m = m;
+ this.mp = m._invDigit();
+ this.mpl = this.mp&0x7fff;
+ this.mph = this.mp>>15;
+ this.um = (1<<(m._DB-15))-1;
+ this.mt2 = 2*m.t;
+ }
+
+ // xR mod m
+ function montConvert(x) {
+ var r = nbi();
+ x.abs()._dlShiftTo(this.m.t,r);
+ r._divRemTo(this.m,null,r);
+ if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r);
+ return r;
+ }
+
+ // x/R mod m
+ function montRevert(x) {
+ var r = nbi();
+ x._copyTo(r);
+ this.reduce(r);
+ return r;
+ }
+
+ // x = x/R mod m (HAC 14.32)
+ function montReduce(x) {
+ while(x.t <= this.mt2) // pad x so am has enough room later
+ x[x.t++] = 0;
+ for(var i = 0; i < this.m.t; ++i) {
+ // faster way of calculating u0 = x[i]*mp mod DV
+ var j = x[i]&0x7fff;
+ var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM;
+ // use am to combine the multiply-shift-add into one call
+ j = i+this.m.t;
+ x[j] += this.m.am(0,u0,x,i,0,this.m.t);
+ // propagate carry
+ while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; }
+ }
+ x._clamp();
+ x._drShiftTo(this.m.t,x);
+ if(x.compareTo(this.m) >= 0) x._subTo(this.m,x);
+ }
+
+ // r = "x^2/R mod m"; x != r
+ function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
+
+ // r = "xy/R mod m"; x,y != r
+ function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
+
+ dojo.extend(Montgomery, {
+ convert: montConvert,
+ revert: montRevert,
+ reduce: montReduce,
+ mulTo: montMulTo,
+ sqrTo: montSqrTo
+ });
+
+ // (protected) true iff this is even
+ function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
+
+ // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
+ function bnpExp(e,z) {
+ if(e > 0xffffffff || e < 1) return BigInteger.ONE;
+ var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
+ g._copyTo(r);
+ while(--i >= 0) {
+ z.sqrTo(r,r2);
+ if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
+ else { var t = r; r = r2; r2 = t; }
+ }
+ return z.revert(r);
+ }
+
+ // (public) this^e % m, 0 <= e < 2^32
+ function bnModPowInt(e,m) {
+ var z;
+ if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m);
+ return this._exp(e,z);
+ }
+
+ dojo.extend(BigInteger, {
+ // protected, not part of the official API
+ _DB: dbits,
+ _DM: (1 << dbits) - 1,
+ _DV: 1 << dbits,
+
+ _FV: Math.pow(2, BI_FP),
+ _F1: BI_FP - dbits,
+ _F2: 2 * dbits-BI_FP,
+
+ // protected
+ _copyTo: bnpCopyTo,
+ _fromInt: bnpFromInt,
+ _fromString: bnpFromString,
+ _clamp: bnpClamp,
+ _dlShiftTo: bnpDLShiftTo,
+ _drShiftTo: bnpDRShiftTo,
+ _lShiftTo: bnpLShiftTo,
+ _rShiftTo: bnpRShiftTo,
+ _subTo: bnpSubTo,
+ _multiplyTo: bnpMultiplyTo,
+ _squareTo: bnpSquareTo,
+ _divRemTo: bnpDivRemTo,
+ _invDigit: bnpInvDigit,
+ _isEven: bnpIsEven,
+ _exp: bnpExp,
+
+ // public
+ toString: bnToString,
+ negate: bnNegate,
+ abs: bnAbs,
+ compareTo: bnCompareTo,
+ bitLength: bnBitLength,
+ mod: bnMod,
+ modPowInt: bnModPowInt
+ });
+
+ dojo._mixin(BigInteger, {
+ // "constants"
+ ZERO: nbv(0),
+ ONE: nbv(1),
+
+ // internal functions
+ _nbi: nbi,
+ _nbv: nbv,
+ _nbits: nbits,
+
+ // internal classes
+ _Montgomery: Montgomery
+ });
+
+ // export to DojoX
+ dojox.math.BigInteger = BigInteger;
+})();
+
+}
diff --git a/js/dojo-1.6/dojox/math/BigInteger.xd.js b/js/dojo-1.6/dojox/math/BigInteger.xd.js
new file mode 100644
index 0000000..b2d5408
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/BigInteger.xd.js
@@ -0,0 +1,604 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.BigInteger"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.BigInteger"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.BigInteger"] = true;
+dojo.provide("dojox.math.BigInteger");
+
+
+dojo.getObject("math.BigInteger", true, dojox);
+dojo.experimental("dojox.math.BigInteger");
+
+// Contributed under CLA by Tom Wu <tjw@cs.Stanford.EDU>
+// See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details.
+
+// Basic JavaScript BN library - subset useful for RSA encryption.
+// The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java.
+
+(function(){
+
+ // Bits per digit
+ var dbits;
+
+ // JavaScript engine analysis
+ var canary = 0xdeadbeefcafe;
+ var j_lm = ((canary&0xffffff)==0xefcafe);
+
+ // (public) Constructor
+ function BigInteger(a,b,c) {
+ if(a != null)
+ if("number" == typeof a) this._fromNumber(a,b,c);
+ else if(!b && "string" != typeof a) this._fromString(a,256);
+ else this._fromString(a,b);
+ }
+
+ // return new, unset BigInteger
+ function nbi() { return new BigInteger(null); }
+
+ // am: Compute w_j += (x*this_i), propagate carries,
+ // c is initial carry, returns final carry.
+ // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
+ // We need to select the fastest one that works in this environment.
+
+ // am1: use a single mult and divide to get the high bits,
+ // max digit bits should be 26 because
+ // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
+ function am1(i,x,w,j,c,n) {
+ while(--n >= 0) {
+ var v = x*this[i++]+w[j]+c;
+ c = Math.floor(v/0x4000000);
+ w[j++] = v&0x3ffffff;
+ }
+ return c;
+ }
+ // am2 avoids a big mult-and-extract completely.
+ // Max digit bits should be <= 30 because we do bitwise ops
+ // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
+ function am2(i,x,w,j,c,n) {
+ var xl = x&0x7fff, xh = x>>15;
+ while(--n >= 0) {
+ var l = this[i]&0x7fff;
+ var h = this[i++]>>15;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
+ c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
+ w[j++] = l&0x3fffffff;
+ }
+ return c;
+ }
+ // Alternately, set max digit bits to 28 since some
+ // browsers slow down when dealing with 32-bit numbers.
+ function am3(i,x,w,j,c,n) {
+ var xl = x&0x3fff, xh = x>>14;
+ while(--n >= 0) {
+ var l = this[i]&0x3fff;
+ var h = this[i++]>>14;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x3fff)<<14)+w[j]+c;
+ c = (l>>28)+(m>>14)+xh*h;
+ w[j++] = l&0xfffffff;
+ }
+ return c;
+ }
+ if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
+ BigInteger.prototype.am = am2;
+ dbits = 30;
+ }
+ else if(j_lm && (navigator.appName != "Netscape")) {
+ BigInteger.prototype.am = am1;
+ dbits = 26;
+ }
+ else { // Mozilla/Netscape seems to prefer am3
+ BigInteger.prototype.am = am3;
+ dbits = 28;
+ }
+
+ var BI_FP = 52;
+
+ // Digit conversions
+ var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
+ var BI_RC = [];
+ var rr,vv;
+ rr = "0".charCodeAt(0);
+ for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
+ rr = "a".charCodeAt(0);
+ for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+ rr = "A".charCodeAt(0);
+ for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+
+ function int2char(n) { return BI_RM.charAt(n); }
+ function intAt(s,i) {
+ var c = BI_RC[s.charCodeAt(i)];
+ return (c==null)?-1:c;
+ }
+
+ // (protected) copy this to r
+ function bnpCopyTo(r) {
+ for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
+ r.t = this.t;
+ r.s = this.s;
+ }
+
+ // (protected) set from integer value x, -DV <= x < DV
+ function bnpFromInt(x) {
+ this.t = 1;
+ this.s = (x<0)?-1:0;
+ if(x > 0) this[0] = x;
+ else if(x < -1) this[0] = x+_DV;
+ else this.t = 0;
+ }
+
+ // return bigint initialized to value
+ function nbv(i) { var r = nbi(); r._fromInt(i); return r; }
+
+ // (protected) set from string and radix
+ function bnpFromString(s,b) {
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 256) k = 8; // byte array
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else { this.fromRadix(s,b); return; }
+ this.t = 0;
+ this.s = 0;
+ var i = s.length, mi = false, sh = 0;
+ while(--i >= 0) {
+ var x = (k==8)?s[i]&0xff:intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-") mi = true;
+ continue;
+ }
+ mi = false;
+ if(sh == 0)
+ this[this.t++] = x;
+ else if(sh+k > this._DB) {
+ this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<<sh;
+ this[this.t++] = (x>>(this._DB-sh));
+ }
+ else
+ this[this.t-1] |= x<<sh;
+ sh += k;
+ if(sh >= this._DB) sh -= this._DB;
+ }
+ if(k == 8 && (s[0]&0x80) != 0) {
+ this.s = -1;
+ if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)<<sh;
+ }
+ this._clamp();
+ if(mi) BigInteger.ZERO._subTo(this,this);
+ }
+
+ // (protected) clamp off excess high words
+ function bnpClamp() {
+ var c = this.s&this._DM;
+ while(this.t > 0 && this[this.t-1] == c) --this.t;
+ }
+
+ // (public) return string representation in given radix
+ function bnToString(b) {
+ if(this.s < 0) return "-"+this.negate().toString(b);
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else return this._toRadix(b);
+ var km = (1<<k)-1, d, m = false, r = "", i = this.t;
+ var p = this._DB-(i*this._DB)%k;
+ if(i-- > 0) {
+ if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
+ while(i >= 0) {
+ if(p < k) {
+ d = (this[i]&((1<<p)-1))<<(k-p);
+ d |= this[--i]>>(p+=this._DB-k);
+ }
+ else {
+ d = (this[i]>>(p-=k))&km;
+ if(p <= 0) { p += this._DB; --i; }
+ }
+ if(d > 0) m = true;
+ if(m) r += int2char(d);
+ }
+ }
+ return m?r:"0";
+ }
+
+ // (public) -this
+ function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; }
+
+ // (public) |this|
+ function bnAbs() { return (this.s<0)?this.negate():this; }
+
+ // (public) return + if this > a, - if this < a, 0 if equal
+ function bnCompareTo(a) {
+ var r = this.s-a.s;
+ if(r) return r;
+ var i = this.t;
+ r = i-a.t;
+ if(r) return r;
+ while(--i >= 0) if((r = this[i] - a[i])) return r;
+ return 0;
+ }
+
+ // returns bit length of the integer x
+ function nbits(x) {
+ var r = 1, t;
+ if((t=x>>>16)) { x = t; r += 16; }
+ if((t=x>>8)) { x = t; r += 8; }
+ if((t=x>>4)) { x = t; r += 4; }
+ if((t=x>>2)) { x = t; r += 2; }
+ if((t=x>>1)) { x = t; r += 1; }
+ return r;
+ }
+
+ // (public) return the number of bits in "this"
+ function bnBitLength() {
+ if(this.t <= 0) return 0;
+ return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM));
+ }
+
+ // (protected) r = this << n*DB
+ function bnpDLShiftTo(n,r) {
+ var i;
+ for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
+ for(i = n-1; i >= 0; --i) r[i] = 0;
+ r.t = this.t+n;
+ r.s = this.s;
+ }
+
+ // (protected) r = this >> n*DB
+ function bnpDRShiftTo(n,r) {
+ for(var i = n; i < this.t; ++i) r[i-n] = this[i];
+ r.t = Math.max(this.t-n,0);
+ r.s = this.s;
+ }
+
+ // (protected) r = this << n
+ function bnpLShiftTo(n,r) {
+ var bs = n%this._DB;
+ var cbs = this._DB-bs;
+ var bm = (1<<cbs)-1;
+ var ds = Math.floor(n/this._DB), c = (this.s<<bs)&this._DM, i;
+ for(i = this.t-1; i >= 0; --i) {
+ r[i+ds+1] = (this[i]>>cbs)|c;
+ c = (this[i]&bm)<<bs;
+ }
+ for(i = ds-1; i >= 0; --i) r[i] = 0;
+ r[ds] = c;
+ r.t = this.t+ds+1;
+ r.s = this.s;
+ r._clamp();
+ }
+
+ // (protected) r = this >> n
+ function bnpRShiftTo(n,r) {
+ r.s = this.s;
+ var ds = Math.floor(n/this._DB);
+ if(ds >= this.t) { r.t = 0; return; }
+ var bs = n%this._DB;
+ var cbs = this._DB-bs;
+ var bm = (1<<bs)-1;
+ r[0] = this[ds]>>bs;
+ for(var i = ds+1; i < this.t; ++i) {
+ r[i-ds-1] |= (this[i]&bm)<<cbs;
+ r[i-ds] = this[i]>>bs;
+ }
+ if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
+ r.t = this.t-ds;
+ r._clamp();
+ }
+
+ // (protected) r = this - a
+ function bnpSubTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]-a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ if(a.t < this.t) {
+ c -= a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c -= a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c -= a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c < -1) r[i++] = this._DV+c;
+ else if(c > 0) r[i++] = c;
+ r.t = i;
+ r._clamp();
+ }
+
+ // (protected) r = this * a, r != this,a (HAC 14.12)
+ // "this" should be the larger one if appropriate.
+ function bnpMultiplyTo(a,r) {
+ var x = this.abs(), y = a.abs();
+ var i = x.t;
+ r.t = i+y.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
+ r.s = 0;
+ r._clamp();
+ if(this.s != a.s) BigInteger.ZERO._subTo(r,r);
+ }
+
+ // (protected) r = this^2, r != this (HAC 14.16)
+ function bnpSquareTo(r) {
+ var x = this.abs();
+ var i = r.t = 2*x.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < x.t-1; ++i) {
+ var c = x.am(i,x[i],r,2*i,0,1);
+ if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) {
+ r[i+x.t] -= x._DV;
+ r[i+x.t+1] = 1;
+ }
+ }
+ if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
+ r.s = 0;
+ r._clamp();
+ }
+
+ // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
+ // r != q, this != m. q or r may be null.
+ function bnpDivRemTo(m,q,r) {
+ var pm = m.abs();
+ if(pm.t <= 0) return;
+ var pt = this.abs();
+ if(pt.t < pm.t) {
+ if(q != null) q._fromInt(0);
+ if(r != null) this._copyTo(r);
+ return;
+ }
+ if(r == null) r = nbi();
+ var y = nbi(), ts = this.s, ms = m.s;
+ var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus
+ if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); }
+ else { pm._copyTo(y); pt._copyTo(r); }
+ var ys = y.t;
+ var y0 = y[ys-1];
+ if(y0 == 0) return;
+ var yt = y0*(1<<this._F1)+((ys>1)?y[ys-2]>>this._F2:0);
+ var d1 = this._FV/yt, d2 = (1<<this._F1)/yt, e = 1<<this._F2;
+ var i = r.t, j = i-ys, t = (q==null)?nbi():q;
+ y._dlShiftTo(j,t);
+ if(r.compareTo(t) >= 0) {
+ r[r.t++] = 1;
+ r._subTo(t,r);
+ }
+ BigInteger.ONE._dlShiftTo(ys,t);
+ t._subTo(y,y); // "negative" y so we can replace sub with am later
+ while(y.t < ys) y[y.t++] = 0;
+ while(--j >= 0) {
+ // Estimate quotient digit
+ var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
+ if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
+ y._dlShiftTo(j,t);
+ r._subTo(t,r);
+ while(r[i] < --qd) r._subTo(t,r);
+ }
+ }
+ if(q != null) {
+ r._drShiftTo(ys,q);
+ if(ts != ms) BigInteger.ZERO._subTo(q,q);
+ }
+ r.t = ys;
+ r._clamp();
+ if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder
+ if(ts < 0) BigInteger.ZERO._subTo(r,r);
+ }
+
+ // (public) this mod a
+ function bnMod(a) {
+ var r = nbi();
+ this.abs()._divRemTo(a,null,r);
+ if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r);
+ return r;
+ }
+
+ // Modular reduction using "classic" algorithm
+ function Classic(m) { this.m = m; }
+ function cConvert(x) {
+ if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
+ else return x;
+ }
+ function cRevert(x) { return x; }
+ function cReduce(x) { x._divRemTo(this.m,null,x); }
+ function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
+ function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
+
+ dojo.extend(Classic, {
+ convert: cConvert,
+ revert: cRevert,
+ reduce: cReduce,
+ mulTo: cMulTo,
+ sqrTo: cSqrTo
+ });
+
+ // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
+ // justification:
+ // xy == 1 (mod m)
+ // xy = 1+km
+ // xy(2-xy) = (1+km)(1-km)
+ // x[y(2-xy)] = 1-k^2m^2
+ // x[y(2-xy)] == 1 (mod m^2)
+ // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
+ // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
+ // JS multiply "overflows" differently from C/C++, so care is needed here.
+ function bnpInvDigit() {
+ if(this.t < 1) return 0;
+ var x = this[0];
+ if((x&1) == 0) return 0;
+ var y = x&3; // y == 1/x mod 2^2
+ y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
+ y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
+ y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
+ // last step - calculate inverse mod DV directly;
+ // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
+ y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits
+ // we really want the negative inverse, and -DV < y < DV
+ return (y>0)?this._DV-y:-y;
+ }
+
+ // Montgomery reduction
+ function Montgomery(m) {
+ this.m = m;
+ this.mp = m._invDigit();
+ this.mpl = this.mp&0x7fff;
+ this.mph = this.mp>>15;
+ this.um = (1<<(m._DB-15))-1;
+ this.mt2 = 2*m.t;
+ }
+
+ // xR mod m
+ function montConvert(x) {
+ var r = nbi();
+ x.abs()._dlShiftTo(this.m.t,r);
+ r._divRemTo(this.m,null,r);
+ if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r);
+ return r;
+ }
+
+ // x/R mod m
+ function montRevert(x) {
+ var r = nbi();
+ x._copyTo(r);
+ this.reduce(r);
+ return r;
+ }
+
+ // x = x/R mod m (HAC 14.32)
+ function montReduce(x) {
+ while(x.t <= this.mt2) // pad x so am has enough room later
+ x[x.t++] = 0;
+ for(var i = 0; i < this.m.t; ++i) {
+ // faster way of calculating u0 = x[i]*mp mod DV
+ var j = x[i]&0x7fff;
+ var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM;
+ // use am to combine the multiply-shift-add into one call
+ j = i+this.m.t;
+ x[j] += this.m.am(0,u0,x,i,0,this.m.t);
+ // propagate carry
+ while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; }
+ }
+ x._clamp();
+ x._drShiftTo(this.m.t,x);
+ if(x.compareTo(this.m) >= 0) x._subTo(this.m,x);
+ }
+
+ // r = "x^2/R mod m"; x != r
+ function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
+
+ // r = "xy/R mod m"; x,y != r
+ function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
+
+ dojo.extend(Montgomery, {
+ convert: montConvert,
+ revert: montRevert,
+ reduce: montReduce,
+ mulTo: montMulTo,
+ sqrTo: montSqrTo
+ });
+
+ // (protected) true iff this is even
+ function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
+
+ // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
+ function bnpExp(e,z) {
+ if(e > 0xffffffff || e < 1) return BigInteger.ONE;
+ var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
+ g._copyTo(r);
+ while(--i >= 0) {
+ z.sqrTo(r,r2);
+ if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
+ else { var t = r; r = r2; r2 = t; }
+ }
+ return z.revert(r);
+ }
+
+ // (public) this^e % m, 0 <= e < 2^32
+ function bnModPowInt(e,m) {
+ var z;
+ if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m);
+ return this._exp(e,z);
+ }
+
+ dojo.extend(BigInteger, {
+ // protected, not part of the official API
+ _DB: dbits,
+ _DM: (1 << dbits) - 1,
+ _DV: 1 << dbits,
+
+ _FV: Math.pow(2, BI_FP),
+ _F1: BI_FP - dbits,
+ _F2: 2 * dbits-BI_FP,
+
+ // protected
+ _copyTo: bnpCopyTo,
+ _fromInt: bnpFromInt,
+ _fromString: bnpFromString,
+ _clamp: bnpClamp,
+ _dlShiftTo: bnpDLShiftTo,
+ _drShiftTo: bnpDRShiftTo,
+ _lShiftTo: bnpLShiftTo,
+ _rShiftTo: bnpRShiftTo,
+ _subTo: bnpSubTo,
+ _multiplyTo: bnpMultiplyTo,
+ _squareTo: bnpSquareTo,
+ _divRemTo: bnpDivRemTo,
+ _invDigit: bnpInvDigit,
+ _isEven: bnpIsEven,
+ _exp: bnpExp,
+
+ // public
+ toString: bnToString,
+ negate: bnNegate,
+ abs: bnAbs,
+ compareTo: bnCompareTo,
+ bitLength: bnBitLength,
+ mod: bnMod,
+ modPowInt: bnModPowInt
+ });
+
+ dojo._mixin(BigInteger, {
+ // "constants"
+ ZERO: nbv(0),
+ ONE: nbv(1),
+
+ // internal functions
+ _nbi: nbi,
+ _nbv: nbv,
+ _nbits: nbits,
+
+ // internal classes
+ _Montgomery: Montgomery
+ });
+
+ // export to DojoX
+ dojox.math.BigInteger = BigInteger;
+})();
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/README b/js/dojo-1.6/dojox/math/README
new file mode 100644
index 0000000..27d29ff
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/README
@@ -0,0 +1,40 @@
+-------------------------------------------------------------------------------
+DojoX Math
+-------------------------------------------------------------------------------
+Version 0.9
+Release date: 10/20/2007
+-------------------------------------------------------------------------------
+Project state:
+experimental
+-------------------------------------------------------------------------------
+Credits
+ Cal Henderson
+ Dan Pupius
+ Tom Trenka (ttrenka AT gmail.com)
+ Eugene Lazutkin (eugene.lazutkin AT gmail.com)
+-------------------------------------------------------------------------------
+Project description
+
+A port of the main functionality of dojo.math 0.4. Includes advanced math
+functions, abstract curve definitions, and some point calculations.
+
+-------------------------------------------------------------------------------
+Dependencies:
+
+Depends on the Dojo Core, v1.0
+-------------------------------------------------------------------------------
+Documentation
+
+See the API documentation.
+-------------------------------------------------------------------------------
+Installation instructions
+
+Grab the following from the Dojo SVN Repository:
+http://svn.dojotoolkit.org/src/dojox/trunk/math.js
+http://svn.dojotoolkit.org/src/dojox/trunk/math/*
+
+Install into the following directory structure:
+/dojox/math/
+
+...which should be at the same level as your Dojo checkout.
+-------------------------------------------------------------------------------
diff --git a/js/dojo-1.6/dojox/math/_base.js b/js/dojo-1.6/dojox/math/_base.js
new file mode 100644
index 0000000..6b92cdb
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/_base.js
@@ -0,0 +1,173 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math._base"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math._base"] = true;
+dojo.provide("dojox.math._base");
+
+
+dojo.getObject("math", true, dojox);
+
+(function(){
+ var m = dojox.math;
+ dojo.mixin(dojox.math, {
+ toRadians: function(/* Number */n){
+ // summary:
+ // Convert the passed number to radians.
+ return (n*Math.PI)/180; // Number
+ },
+ toDegrees: function(/* Number */n){
+ // summary:
+ // Convert the passed number to degrees.
+ return (n*180)/Math.PI; // Number
+ },
+ degreesToRadians: function(/* Number */n){
+ // summary:
+ // Deprecated. Use dojox.math.toRadians.
+ return m.toRadians(n); // Number
+ },
+ radiansToDegrees: function(/* Number */n){
+ // summary:
+ // Deprecated. Use dojox.math.toDegrees.
+ return m.toDegrees(n); // Number
+ },
+
+ _gamma: function(z){
+ // summary:
+ // Compute the gamma function for the passed number.
+ // Approximately 14 dijits of precision with non-integers.
+ var answer = 1; // 0!
+ // gamma(n+1) = n * gamma(n)
+ while (--z >= 1){
+ answer *= z;
+ }
+ if(z == 0){ return answer; } // normal integer quick return
+ if(Math.floor(z) == z){ return NaN; } // undefined at nonpositive integers since sin() below will return 0
+ // assert: z < 1, remember this z is really z-1
+ if(z == -0.5){ return Math.sqrt(Math.PI); } // popular gamma(1/2)
+ if(z < -0.5){ // remember this z is really z-1
+ return Math.PI / (Math.sin(Math.PI * (z + 1)) * this._gamma(-z)); // reflection
+ }
+ // assert: -0.5 < z < 1
+ // Spouge approximation algorithm
+ var a = 13;
+ // c[0] = sqrt(2*PI) / exp(a)
+ // var kfact = 1
+ // for (var k=1; k < a; k++){
+ // c[k] = pow(-k + a, k - 0.5) * exp(-k) / kfact
+ // kfact *= -k // (-1)^(k-1) * (k-1)!
+ // }
+ var c = [ // precomputed from the above algorithm
+ 5.6658056015186327e-6,
+ 1.2743717663379679,
+ -4.9374199093155115,
+ 7.8720267032485961,
+ -6.6760503749436087,
+ 3.2525298444485167,
+ -9.1852521441026269e-1,
+ 1.4474022977730785e-1,
+ -1.1627561382389853e-2,
+ 4.0117980757066622e-4,
+ -4.2652458386405744e-6,
+ 6.6651913290336086e-9,
+ -1.5392547381874824e-13
+ ];
+ var sum = c[0];
+ for (var k=1; k < a; k++){
+ sum += c[k] / (z + k);
+ }
+ return answer * Math.pow(z + a, z + 0.5) / Math.exp(z) * sum;
+ },
+
+ factorial: function(/* Number */n){
+ // summary:
+ // Return the factorial of n
+ return this._gamma(n+1); // Number
+ },
+
+ permutations: function(/* Number */n, /* Number */k){
+ // summary:
+ // TODO
+ if(n==0 || k==0){
+ return 1; // Number
+ }
+ return this.factorial(n) / this.factorial(n-k);
+ },
+
+ combinations: function(/* Number */n, /* Number */r){
+ // summary:
+ // TODO
+ if(n==0 || r==0){
+ return 1; // Number
+ }
+ return this.factorial(n) / (this.factorial(n-r) * this.factorial(r)); // Number
+ },
+
+ bernstein: function(/* Number */t, /* Number */n, /* Number */ i){
+ // summary:
+ // TODO
+ return this.combinations(n, i) * Math.pow(t, i) * Math.pow(1-t, n-i); // Number
+ },
+
+ gaussian: function(){
+ // summary:
+ // Return a random number based on the Gaussian algo.
+ var k=2;
+ do{
+ var i=2*Math.random()-1;
+ var j=2*Math.random()-1;
+ k = i*i+j*j;
+ }while(k>=1);
+ return i * Math.sqrt((-2*Math.log(k))/k); // Number
+ },
+
+ // create a range of numbers
+ range: function(/* Number */a, /* Number? */b, /* Number? */step){
+ // summary:
+ // Create a range of numbers based on the parameters.
+ if(arguments.length<2){
+ b=a,a=0;
+ }
+ var range=[], s=step||1, i;
+ if(s>0){
+ for(i=a; i<b; i+=s){
+ range.push(i);
+ }
+ }else{
+ if(s<0){
+ for(i=a; i>b; i+=s){
+ range.push(i);
+ }
+ }else{
+ throw new Error("dojox.math.range: step must not be zero.");
+ }
+ }
+ return range; // Array
+ },
+
+ distance: function(/* Array */a, /* Array */b){
+ // summary:
+ // Calculate the distance between point A and point B
+ return Math.sqrt(Math.pow(b[0]-a[0],2)+Math.pow(b[1]-a[1],2)); // Number
+ },
+
+ midpoint: function(/* Array */a, /* Array */b){
+ // summary:
+ // Calculate the midpoint between points A and B. A and B may be multidimensional.
+ if(a.length!=b.length){
+ console.error("dojox.math.midpoint: Points A and B are not the same dimensionally.", a, b);
+ }
+ var m=[];
+ for(var i=0; i<a.length; i++){
+ m[i]=(a[i]+b[i])/2;
+ }
+ return m; // Array
+ }
+ });
+})();
+
+}
diff --git a/js/dojo-1.6/dojox/math/_base.xd.js b/js/dojo-1.6/dojox/math/_base.xd.js
new file mode 100644
index 0000000..72ecefe
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/_base.xd.js
@@ -0,0 +1,177 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math._base"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math._base"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math._base"] = true;
+dojo.provide("dojox.math._base");
+
+
+dojo.getObject("math", true, dojox);
+
+(function(){
+ var m = dojox.math;
+ dojo.mixin(dojox.math, {
+ toRadians: function(/* Number */n){
+ // summary:
+ // Convert the passed number to radians.
+ return (n*Math.PI)/180; // Number
+ },
+ toDegrees: function(/* Number */n){
+ // summary:
+ // Convert the passed number to degrees.
+ return (n*180)/Math.PI; // Number
+ },
+ degreesToRadians: function(/* Number */n){
+ // summary:
+ // Deprecated. Use dojox.math.toRadians.
+ return m.toRadians(n); // Number
+ },
+ radiansToDegrees: function(/* Number */n){
+ // summary:
+ // Deprecated. Use dojox.math.toDegrees.
+ return m.toDegrees(n); // Number
+ },
+
+ _gamma: function(z){
+ // summary:
+ // Compute the gamma function for the passed number.
+ // Approximately 14 dijits of precision with non-integers.
+ var answer = 1; // 0!
+ // gamma(n+1) = n * gamma(n)
+ while (--z >= 1){
+ answer *= z;
+ }
+ if(z == 0){ return answer; } // normal integer quick return
+ if(Math.floor(z) == z){ return NaN; } // undefined at nonpositive integers since sin() below will return 0
+ // assert: z < 1, remember this z is really z-1
+ if(z == -0.5){ return Math.sqrt(Math.PI); } // popular gamma(1/2)
+ if(z < -0.5){ // remember this z is really z-1
+ return Math.PI / (Math.sin(Math.PI * (z + 1)) * this._gamma(-z)); // reflection
+ }
+ // assert: -0.5 < z < 1
+ // Spouge approximation algorithm
+ var a = 13;
+ // c[0] = sqrt(2*PI) / exp(a)
+ // var kfact = 1
+ // for (var k=1; k < a; k++){
+ // c[k] = pow(-k + a, k - 0.5) * exp(-k) / kfact
+ // kfact *= -k // (-1)^(k-1) * (k-1)!
+ // }
+ var c = [ // precomputed from the above algorithm
+ 5.6658056015186327e-6,
+ 1.2743717663379679,
+ -4.9374199093155115,
+ 7.8720267032485961,
+ -6.6760503749436087,
+ 3.2525298444485167,
+ -9.1852521441026269e-1,
+ 1.4474022977730785e-1,
+ -1.1627561382389853e-2,
+ 4.0117980757066622e-4,
+ -4.2652458386405744e-6,
+ 6.6651913290336086e-9,
+ -1.5392547381874824e-13
+ ];
+ var sum = c[0];
+ for (var k=1; k < a; k++){
+ sum += c[k] / (z + k);
+ }
+ return answer * Math.pow(z + a, z + 0.5) / Math.exp(z) * sum;
+ },
+
+ factorial: function(/* Number */n){
+ // summary:
+ // Return the factorial of n
+ return this._gamma(n+1); // Number
+ },
+
+ permutations: function(/* Number */n, /* Number */k){
+ // summary:
+ // TODO
+ if(n==0 || k==0){
+ return 1; // Number
+ }
+ return this.factorial(n) / this.factorial(n-k);
+ },
+
+ combinations: function(/* Number */n, /* Number */r){
+ // summary:
+ // TODO
+ if(n==0 || r==0){
+ return 1; // Number
+ }
+ return this.factorial(n) / (this.factorial(n-r) * this.factorial(r)); // Number
+ },
+
+ bernstein: function(/* Number */t, /* Number */n, /* Number */ i){
+ // summary:
+ // TODO
+ return this.combinations(n, i) * Math.pow(t, i) * Math.pow(1-t, n-i); // Number
+ },
+
+ gaussian: function(){
+ // summary:
+ // Return a random number based on the Gaussian algo.
+ var k=2;
+ do{
+ var i=2*Math.random()-1;
+ var j=2*Math.random()-1;
+ k = i*i+j*j;
+ }while(k>=1);
+ return i * Math.sqrt((-2*Math.log(k))/k); // Number
+ },
+
+ // create a range of numbers
+ range: function(/* Number */a, /* Number? */b, /* Number? */step){
+ // summary:
+ // Create a range of numbers based on the parameters.
+ if(arguments.length<2){
+ b=a,a=0;
+ }
+ var range=[], s=step||1, i;
+ if(s>0){
+ for(i=a; i<b; i+=s){
+ range.push(i);
+ }
+ }else{
+ if(s<0){
+ for(i=a; i>b; i+=s){
+ range.push(i);
+ }
+ }else{
+ throw new Error("dojox.math.range: step must not be zero.");
+ }
+ }
+ return range; // Array
+ },
+
+ distance: function(/* Array */a, /* Array */b){
+ // summary:
+ // Calculate the distance between point A and point B
+ return Math.sqrt(Math.pow(b[0]-a[0],2)+Math.pow(b[1]-a[1],2)); // Number
+ },
+
+ midpoint: function(/* Array */a, /* Array */b){
+ // summary:
+ // Calculate the midpoint between points A and B. A and B may be multidimensional.
+ if(a.length!=b.length){
+ console.error("dojox.math.midpoint: Points A and B are not the same dimensionally.", a, b);
+ }
+ var m=[];
+ for(var i=0; i<a.length; i++){
+ m[i]=(a[i]+b[i])/2;
+ }
+ return m; // Array
+ }
+ });
+})();
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/curves.js b/js/dojo-1.6/dojox/math/curves.js
new file mode 100644
index 0000000..32f81a1
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/curves.js
@@ -0,0 +1,203 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.curves"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.curves"] = true;
+dojo.provide("dojox.math.curves");
+
+
+dojo.getObject("math.curves", true, dojox);
+
+dojo.mixin(dojox.math.curves, {
+ Line:function (start, end) {
+ this.start = start;
+ this.end = end;
+ this.dimensions = start.length;
+ for (var i = 0; i < start.length; i++) {
+ start[i] = Number(start[i]);
+ }
+ for (var i = 0; i < end.length; i++) {
+ end[i] = Number(end[i]);
+ }
+ this.getValue = function (n) {
+ var retVal = new Array(this.dimensions);
+ for (var i = 0; i < this.dimensions; i++) {
+ retVal[i] = ((this.end[i] - this.start[i]) * n) + this.start[i];
+ }
+ return retVal;
+ };
+ return this;
+ },
+ Bezier:function(pnts) {
+ this.getValue = function (step) {
+ if (step >= 1) {
+ return this.p[this.p.length - 1];
+ }
+ if (step <= 0) {
+ return this.p[0];
+ }
+ var retVal = new Array(this.p[0].length);
+ for (var k = 0; j < this.p[0].length; k++) {
+ retVal[k] = 0;
+ }
+ for (var j = 0; j < this.p[0].length; j++) {
+ var C = 0;
+ var D = 0;
+ for (var i = 0; i < this.p.length; i++) {
+ C += this.p[i][j] * this.p[this.p.length - 1][0] * dojox.math.bernstein(step, this.p.length, i);
+ }
+ for (var l = 0; l < this.p.length; l++) {
+ D += this.p[this.p.length - 1][0] * dojox.math.bernstein(step, this.p.length, l);
+ }
+ retVal[j] = C / D;
+ }
+ return retVal;
+ };
+ this.p = pnts;
+ return this;
+ },
+ CatmullRom:function (pnts, c) {
+ this.getValue = function (step) {
+ var percent = step * (this.p.length - 1);
+ var node = Math.floor(percent);
+ var progress = percent - node;
+ var i0 = node - 1;
+ if (i0 < 0) {
+ i0 = 0;
+ }
+ var i = node;
+ var i1 = node + 1;
+ if (i1 >= this.p.length) {
+ i1 = this.p.length - 1;
+ }
+ var i2 = node + 2;
+ if (i2 >= this.p.length) {
+ i2 = this.p.length - 1;
+ }
+ var u = progress;
+ var u2 = progress * progress;
+ var u3 = progress * progress * progress;
+ var retVal = new Array(this.p[0].length);
+ for (var k = 0; k < this.p[0].length; k++) {
+ var x1 = (-this.c * this.p[i0][k]) + ((2 - this.c) * this.p[i][k]) + ((this.c - 2) * this.p[i1][k]) + (this.c * this.p[i2][k]);
+ var x2 = (2 * this.c * this.p[i0][k]) + ((this.c - 3) * this.p[i][k]) + ((3 - 2 * this.c) * this.p[i1][k]) + (-this.c * this.p[i2][k]);
+ var x3 = (-this.c * this.p[i0][k]) + (this.c * this.p[i1][k]);
+ var x4 = this.p[i][k];
+ retVal[k] = x1 * u3 + x2 * u2 + x3 * u + x4;
+ }
+ return retVal;
+ };
+ if (!c) {
+ this.c = 0.7;
+ } else {
+ this.c = c;
+ }
+ this.p = pnts;
+ return this;
+ },
+ Arc:function (start, end, ccw){
+ function translate(a,b){
+ var c=new Array(a.length);
+ for(var i=0; i<a.length; i++){ c[i]=a[i]+b[i]; }
+ return c;
+ }
+ function invert(a){
+ var b = new Array(a.length);
+ for(var i=0; i<a.length; i++){ b[i]=-a[i]; }
+ return b;
+ }
+ var center = dojox.math.midpoint(start, end);
+ var sides = translate(invert(center), start);
+ var rad = Math.sqrt(Math.pow(sides[0], 2) + Math.pow(sides[1], 2));
+ var theta = dojox.math.radiansToDegrees(Math.atan(sides[1] / sides[0]));
+ if (sides[0] < 0){
+ theta -= 90;
+ } else {
+ theta += 90;
+ }
+ dojox.math.curves.CenteredArc.call(this, center, rad, theta, theta + (ccw ? -180 : 180));
+ },
+ CenteredArc:function (center, radius, start, end) {
+ this.center = center;
+ this.radius = radius;
+ this.start = start || 0;
+ this.end = end;
+ this.getValue = function (n) {
+ var retVal = new Array(2);
+ var theta = dojox.math.degreesToRadians(this.start + ((this.end - this.start) * n));
+ retVal[0] = this.center[0] + this.radius * Math.sin(theta);
+ retVal[1] = this.center[1] - this.radius * Math.cos(theta);
+ return retVal;
+ };
+ return this;
+ },
+ Circle:function(center, radius){
+ dojox.math.curves.CenteredArc.call(this, center, radius, 0, 360);
+ return this;
+ },
+ Path:function () {
+ var curves = [];
+ var weights = [];
+ var ranges = [];
+ var totalWeight = 0;
+ this.add = function (curve, weight) {
+ if (weight < 0) {
+ console.error("dojox.math.curves.Path.add: weight cannot be less than 0");
+ }
+ curves.push(curve);
+ weights.push(weight);
+ totalWeight += weight;
+ computeRanges();
+ };
+ this.remove = function (curve) {
+ for (var i = 0; i < curves.length; i++) {
+ if (curves[i] == curve) {
+ curves.splice(i, 1);
+ totalWeight -= weights.splice(i, 1)[0];
+ break;
+ }
+ }
+ computeRanges();
+ };
+ this.removeAll = function () {
+ curves = [];
+ weights = [];
+ totalWeight = 0;
+ };
+ this.getValue = function (n) {
+ var found = false, value = 0;
+ for (var i = 0; i < ranges.length; i++) {
+ var r = ranges[i];
+ if (n >= r[0] && n < r[1]) {
+ var subN = (n - r[0]) / r[2];
+ value = curves[i].getValue(subN);
+ found = true;
+ break;
+ }
+ }
+ if (!found) {
+ value = curves[curves.length - 1].getValue(1);
+ }
+ for (var j = 0; j < i; j++) {
+ value = dojox.math.points.translate(value, curves[j].getValue(1));
+ }
+ return value;
+ };
+ function computeRanges() {
+ var start = 0;
+ for (var i = 0; i < weights.length; i++) {
+ var end = start + weights[i] / totalWeight;
+ var len = end - start;
+ ranges[i] = [start, end, len];
+ start = end;
+ }
+ }
+ return this;
+ }
+});
+
+}
diff --git a/js/dojo-1.6/dojox/math/curves.xd.js b/js/dojo-1.6/dojox/math/curves.xd.js
new file mode 100644
index 0000000..4b3587f
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/curves.xd.js
@@ -0,0 +1,207 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.curves"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.curves"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.curves"] = true;
+dojo.provide("dojox.math.curves");
+
+
+dojo.getObject("math.curves", true, dojox);
+
+dojo.mixin(dojox.math.curves, {
+ Line:function (start, end) {
+ this.start = start;
+ this.end = end;
+ this.dimensions = start.length;
+ for (var i = 0; i < start.length; i++) {
+ start[i] = Number(start[i]);
+ }
+ for (var i = 0; i < end.length; i++) {
+ end[i] = Number(end[i]);
+ }
+ this.getValue = function (n) {
+ var retVal = new Array(this.dimensions);
+ for (var i = 0; i < this.dimensions; i++) {
+ retVal[i] = ((this.end[i] - this.start[i]) * n) + this.start[i];
+ }
+ return retVal;
+ };
+ return this;
+ },
+ Bezier:function(pnts) {
+ this.getValue = function (step) {
+ if (step >= 1) {
+ return this.p[this.p.length - 1];
+ }
+ if (step <= 0) {
+ return this.p[0];
+ }
+ var retVal = new Array(this.p[0].length);
+ for (var k = 0; j < this.p[0].length; k++) {
+ retVal[k] = 0;
+ }
+ for (var j = 0; j < this.p[0].length; j++) {
+ var C = 0;
+ var D = 0;
+ for (var i = 0; i < this.p.length; i++) {
+ C += this.p[i][j] * this.p[this.p.length - 1][0] * dojox.math.bernstein(step, this.p.length, i);
+ }
+ for (var l = 0; l < this.p.length; l++) {
+ D += this.p[this.p.length - 1][0] * dojox.math.bernstein(step, this.p.length, l);
+ }
+ retVal[j] = C / D;
+ }
+ return retVal;
+ };
+ this.p = pnts;
+ return this;
+ },
+ CatmullRom:function (pnts, c) {
+ this.getValue = function (step) {
+ var percent = step * (this.p.length - 1);
+ var node = Math.floor(percent);
+ var progress = percent - node;
+ var i0 = node - 1;
+ if (i0 < 0) {
+ i0 = 0;
+ }
+ var i = node;
+ var i1 = node + 1;
+ if (i1 >= this.p.length) {
+ i1 = this.p.length - 1;
+ }
+ var i2 = node + 2;
+ if (i2 >= this.p.length) {
+ i2 = this.p.length - 1;
+ }
+ var u = progress;
+ var u2 = progress * progress;
+ var u3 = progress * progress * progress;
+ var retVal = new Array(this.p[0].length);
+ for (var k = 0; k < this.p[0].length; k++) {
+ var x1 = (-this.c * this.p[i0][k]) + ((2 - this.c) * this.p[i][k]) + ((this.c - 2) * this.p[i1][k]) + (this.c * this.p[i2][k]);
+ var x2 = (2 * this.c * this.p[i0][k]) + ((this.c - 3) * this.p[i][k]) + ((3 - 2 * this.c) * this.p[i1][k]) + (-this.c * this.p[i2][k]);
+ var x3 = (-this.c * this.p[i0][k]) + (this.c * this.p[i1][k]);
+ var x4 = this.p[i][k];
+ retVal[k] = x1 * u3 + x2 * u2 + x3 * u + x4;
+ }
+ return retVal;
+ };
+ if (!c) {
+ this.c = 0.7;
+ } else {
+ this.c = c;
+ }
+ this.p = pnts;
+ return this;
+ },
+ Arc:function (start, end, ccw){
+ function translate(a,b){
+ var c=new Array(a.length);
+ for(var i=0; i<a.length; i++){ c[i]=a[i]+b[i]; }
+ return c;
+ }
+ function invert(a){
+ var b = new Array(a.length);
+ for(var i=0; i<a.length; i++){ b[i]=-a[i]; }
+ return b;
+ }
+ var center = dojox.math.midpoint(start, end);
+ var sides = translate(invert(center), start);
+ var rad = Math.sqrt(Math.pow(sides[0], 2) + Math.pow(sides[1], 2));
+ var theta = dojox.math.radiansToDegrees(Math.atan(sides[1] / sides[0]));
+ if (sides[0] < 0){
+ theta -= 90;
+ } else {
+ theta += 90;
+ }
+ dojox.math.curves.CenteredArc.call(this, center, rad, theta, theta + (ccw ? -180 : 180));
+ },
+ CenteredArc:function (center, radius, start, end) {
+ this.center = center;
+ this.radius = radius;
+ this.start = start || 0;
+ this.end = end;
+ this.getValue = function (n) {
+ var retVal = new Array(2);
+ var theta = dojox.math.degreesToRadians(this.start + ((this.end - this.start) * n));
+ retVal[0] = this.center[0] + this.radius * Math.sin(theta);
+ retVal[1] = this.center[1] - this.radius * Math.cos(theta);
+ return retVal;
+ };
+ return this;
+ },
+ Circle:function(center, radius){
+ dojox.math.curves.CenteredArc.call(this, center, radius, 0, 360);
+ return this;
+ },
+ Path:function () {
+ var curves = [];
+ var weights = [];
+ var ranges = [];
+ var totalWeight = 0;
+ this.add = function (curve, weight) {
+ if (weight < 0) {
+ console.error("dojox.math.curves.Path.add: weight cannot be less than 0");
+ }
+ curves.push(curve);
+ weights.push(weight);
+ totalWeight += weight;
+ computeRanges();
+ };
+ this.remove = function (curve) {
+ for (var i = 0; i < curves.length; i++) {
+ if (curves[i] == curve) {
+ curves.splice(i, 1);
+ totalWeight -= weights.splice(i, 1)[0];
+ break;
+ }
+ }
+ computeRanges();
+ };
+ this.removeAll = function () {
+ curves = [];
+ weights = [];
+ totalWeight = 0;
+ };
+ this.getValue = function (n) {
+ var found = false, value = 0;
+ for (var i = 0; i < ranges.length; i++) {
+ var r = ranges[i];
+ if (n >= r[0] && n < r[1]) {
+ var subN = (n - r[0]) / r[2];
+ value = curves[i].getValue(subN);
+ found = true;
+ break;
+ }
+ }
+ if (!found) {
+ value = curves[curves.length - 1].getValue(1);
+ }
+ for (var j = 0; j < i; j++) {
+ value = dojox.math.points.translate(value, curves[j].getValue(1));
+ }
+ return value;
+ };
+ function computeRanges() {
+ var start = 0;
+ for (var i = 0; i < weights.length; i++) {
+ var end = start + weights[i] / totalWeight;
+ var len = end - start;
+ ranges[i] = [start, end, len];
+ start = end;
+ }
+ }
+ return this;
+ }
+});
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/matrix.js b/js/dojo-1.6/dojox/math/matrix.js
new file mode 100644
index 0000000..279806c
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/matrix.js
@@ -0,0 +1,304 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.matrix"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.matrix"] = true;
+dojo.provide("dojox.math.matrix");
+
+
+dojo.getObject("math.matrix", true, dojox);
+
+dojo.mixin(dojox.math.matrix, {
+ iDF:0,
+ ALMOST_ZERO: 1e-10,
+ multiply: function(/* Array */a, /* Array */b){
+ // summary
+ // Multiply matrix a by matrix b.
+ var ay=a.length, ax=a[0].length, by=b.length, bx=b[0].length;
+ if(ax!=by){
+ console.warn("Can't multiply matricies of sizes " + ax + "," + ay + " and " + bx + "," + by);
+ return [[0]];
+ }
+ var c=[];
+ for (var k=0; k<ay; k++) {
+ c[k]=[];
+ for(var i=0; i<bx; i++){
+ c[k][i]=0;
+ for(var m=0; m<ax; m++){
+ c[k][i]+=a[k][m]*b[m][i];
+ }
+ }
+ }
+ return c; // Array
+ },
+ product: function(/* Array... */){
+ // summary
+ // Return the product of N matrices
+ if (arguments.length==0){
+ console.warn("can't multiply 0 matrices!");
+ return 1;
+ }
+ var m=arguments[0];
+ for(var i=1; i<arguments.length; i++){
+ m=this.multiply(m, arguments[i]);
+ }
+ return m; // Array
+ },
+ sum: function(/* Array... */){
+ // summary
+ // Return the sum of N matrices
+ if(arguments.length==0){
+ console.warn("can't sum 0 matrices!");
+ return 0; // Number
+ }
+ var m=this.copy(arguments[0]);
+ var rows=m.length;
+ if(rows==0){
+ console.warn("can't deal with matrices of 0 rows!");
+ return 0;
+ }
+ var cols=m[0].length;
+ if(cols==0){
+ console.warn("can't deal with matrices of 0 cols!");
+ return 0;
+ }
+ for(var i=1; i<arguments.length; ++i){
+ var arg=arguments[i];
+ if(arg.length!=rows || arg[0].length!=cols){
+ console.warn("can't add matrices of different dimensions: first dimensions were " + rows + "x" + cols + ", current dimensions are " + arg.length + "x" + arg[0].length);
+ return 0;
+ }
+ for(var r=0; r<rows; r++) {
+ for(var c=0; c<cols; c++) {
+ m[r][c]+=arg[r][c];
+ }
+ }
+ }
+ return m; // Array
+ },
+ inverse: function(/* Array */a){
+ // summary
+ // Return the inversion of the passed matrix
+ if(a.length==1 && a[0].length==1){
+ return [[1/a[0][0]]]; // Array
+ }
+ var tms=a.length, m=this.create(tms, tms), mm=this.adjoint(a), det=this.determinant(a), dd=0;
+ if(det==0){
+ console.warn("Determinant Equals 0, Not Invertible.");
+ return [[0]];
+ }else{
+ dd=1/det;
+ }
+ for(var i=0; i<tms; i++) {
+ for (var j=0; j<tms; j++) {
+ m[i][j]=dd*mm[i][j];
+ }
+ }
+ return m; // Array
+ },
+ determinant: function(/* Array */a){
+ // summary
+ // Calculate the determinant of the passed square matrix.
+ if(a.length!=a[0].length){
+ console.warn("Can't calculate the determinant of a non-squre matrix!");
+ return 0;
+ }
+ var tms=a.length, det=1, b=this.upperTriangle(a);
+ for (var i=0; i<tms; i++){
+ var bii=b[i][i];
+ if (Math.abs(bii)<this.ALMOST_ZERO) {
+ return 0; // Number
+ }
+ det*=bii;
+ }
+ det*=this.iDF;
+ return det; // Number
+ },
+ upperTriangle: function(/* Array */m){
+ // Summary
+ // Find the upper triangle of the passed matrix and return it.
+ m=this.copy(m);
+ var f1=0, temp=0, tms=m.length, v=1;
+ this.iDF=1;
+ for(var col=0; col<tms-1; col++){
+ if(typeof m[col][col]!="number") {
+ console.warn("non-numeric entry found in a numeric matrix: m[" + col + "][" + col + "]=" + m[col][col]);
+ }
+ v=1;
+ var stop_loop=0;
+ while((m[col][col] == 0) && !stop_loop){
+ if (col+v>=tms){
+ this.iDF=0;
+ stop_loop=1;
+ }else{
+ for(var r=0; r<tms; r++){
+ temp=m[col][r];
+ m[col][r]=m[col+v][r];
+ m[col+v][r]=temp;
+ }
+ v++;
+ this.iDF*=-1;
+ }
+ }
+ for(var row=col+1; row<tms; row++){
+ if(typeof m[row][col]!="number"){
+ console.warn("non-numeric entry found in a numeric matrix: m[" + row + "][" + col + "]=" + m[row][col]);
+ }
+ if(typeof m[col][row]!="number"){
+ console.warn("non-numeric entry found in a numeric matrix: m[" + col + "][" + row + "]=" + m[col][row]);
+ }
+ if(m[col][col]!=0){
+ var f1=(-1)* m[row][col]/m[col][col];
+ for (var i=col; i<tms; i++){
+ m[row][i]=f1*m[col][i]+m[row][i];
+ }
+ }
+ }
+ }
+ return m; // Array
+ },
+ create: function(/* Number */a, /* Number */b, /* Number? */value){
+ // summary
+ // Create a new matrix with rows a and cols b, and pre-populate with value.
+ value=value||0;
+ var m=[];
+ for (var i=0; i<b; i++){
+ m[i]=[];
+ for(var j=0; j<a; j++) {
+ m[i][j]=value;
+ }
+ }
+ return m; // Array
+ },
+ ones: function(/* Number */a, /* Number */b){
+ // summary
+ // Create a matrix pre-populated with ones
+ return this.create(a, b, 1); // Array
+ },
+ zeros: function(/* Number */a, /* Number */b){
+ // summary
+ // Create a matrix pre-populated with zeros
+ return this.create(a, b); // Array
+ },
+ identity: function(/* Number */size, /* Number? */scale){
+ // summary
+ // Create an identity matrix based on the size and scale.
+ scale=scale||1;
+ var m=[];
+ for(var i=0; i<size; i++){
+ m[i]=[];
+ for(var j=0; j<size; j++){
+ m[i][j]=(i==j?scale:0);
+ }
+ }
+ return m; // Array
+ },
+ adjoint: function(/* Array */a){
+ // summary
+ // Find the adjoint of the passed matrix
+ var tms=a.length;
+ if(tms<=1){
+ console.warn("Can't find the adjoint of a matrix with a dimension less than 2");
+ return [[0]];
+ }
+ if(a.length!=a[0].length){
+ console.warn("Can't find the adjoint of a non-square matrix");
+ return [[0]];
+ }
+ var m=this.create(tms, tms), ap=this.create(tms-1, tms-1);
+ var ii=0, jj=0, ia=0, ja=0, det=0;
+ for(var i=0; i<tms; i++){
+ for (var j=0; j<tms; j++){
+ ia=0;
+ for(ii=0; ii<tms; ii++){
+ if(ii==i){
+ continue;
+ }
+ ja = 0;
+ for(jj=0; jj<tms; jj++){
+ if(jj==j){
+ continue;
+ }
+ ap[ia][ja] = a[ii][jj];
+ ja++;
+ }
+ ia++;
+ }
+ det=this.determinant(ap);
+ m[i][j]=Math.pow(-1, (i+j))*det;
+ }
+ }
+ return this.transpose(m); // Array
+ },
+ transpose: function(/* Array */a){
+ // summary
+ // Transpose the passed matrix (i.e. rows to columns)
+ var m=this.create(a.length, a[0].length);
+ for(var i=0; i<a.length; i++){
+ for(var j=0; j<a[i].length; j++){
+ m[j][i]=a[i][j];
+ }
+ }
+ return m; // Array
+ },
+ format: function(/* Array */a, /* Number? */points){
+ // summary
+ // Return a string representation of the matrix, rounded to points (if needed)
+ points=points||5;
+ function format_int(x, dp){
+ var fac=Math.pow(10, dp);
+ var a=Math.round(x*fac)/fac;
+ var b=a.toString();
+ if(b.charAt(0)!="-"){
+ b=" "+b;
+ }
+ if(b.indexOf(".")>-1){
+ b+=".";
+ }
+ while(b.length<dp+3){
+ b+="0";
+ }
+ return b;
+ }
+ var ya=a.length;
+ var xa=ya>0?a[0].length:0;
+ var buffer="";
+ for(var y=0; y<ya; y++){
+ buffer+="| ";
+ for(var x=0; x<xa; x++){
+ buffer+=format_int(a[y][x], points)+" ";
+ }
+ buffer+="|\n";
+ }
+ return buffer; // string
+ },
+ copy: function(/* Array */a){
+ // summary
+ // Create a copy of the passed matrix
+ var ya=a.length, xa=a[0].length, m=this.create(xa, ya);
+ for(var y=0; y<ya; y++){
+ for(var x=0; x<xa; x++){
+ m[y][x]=a[y][x];
+ }
+ }
+ return m; // Array
+ },
+ scale: function(/* Array */a, /* Number */factor){
+ // summary
+ // Create a copy of passed matrix and scale each member by factor.
+ a=this.copy(a);
+ var ya=a.length, xa=a[0].length;
+ for(var y=0; y<ya; y++){
+ for(var x=0; x<xa; x++){
+ a[y][x]*=factor;
+ }
+ }
+ return a;
+ }
+});
+
+}
diff --git a/js/dojo-1.6/dojox/math/matrix.xd.js b/js/dojo-1.6/dojox/math/matrix.xd.js
new file mode 100644
index 0000000..8bbb713
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/matrix.xd.js
@@ -0,0 +1,308 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.matrix"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.matrix"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.matrix"] = true;
+dojo.provide("dojox.math.matrix");
+
+
+dojo.getObject("math.matrix", true, dojox);
+
+dojo.mixin(dojox.math.matrix, {
+ iDF:0,
+ ALMOST_ZERO: 1e-10,
+ multiply: function(/* Array */a, /* Array */b){
+ // summary
+ // Multiply matrix a by matrix b.
+ var ay=a.length, ax=a[0].length, by=b.length, bx=b[0].length;
+ if(ax!=by){
+ console.warn("Can't multiply matricies of sizes " + ax + "," + ay + " and " + bx + "," + by);
+ return [[0]];
+ }
+ var c=[];
+ for (var k=0; k<ay; k++) {
+ c[k]=[];
+ for(var i=0; i<bx; i++){
+ c[k][i]=0;
+ for(var m=0; m<ax; m++){
+ c[k][i]+=a[k][m]*b[m][i];
+ }
+ }
+ }
+ return c; // Array
+ },
+ product: function(/* Array... */){
+ // summary
+ // Return the product of N matrices
+ if (arguments.length==0){
+ console.warn("can't multiply 0 matrices!");
+ return 1;
+ }
+ var m=arguments[0];
+ for(var i=1; i<arguments.length; i++){
+ m=this.multiply(m, arguments[i]);
+ }
+ return m; // Array
+ },
+ sum: function(/* Array... */){
+ // summary
+ // Return the sum of N matrices
+ if(arguments.length==0){
+ console.warn("can't sum 0 matrices!");
+ return 0; // Number
+ }
+ var m=this.copy(arguments[0]);
+ var rows=m.length;
+ if(rows==0){
+ console.warn("can't deal with matrices of 0 rows!");
+ return 0;
+ }
+ var cols=m[0].length;
+ if(cols==0){
+ console.warn("can't deal with matrices of 0 cols!");
+ return 0;
+ }
+ for(var i=1; i<arguments.length; ++i){
+ var arg=arguments[i];
+ if(arg.length!=rows || arg[0].length!=cols){
+ console.warn("can't add matrices of different dimensions: first dimensions were " + rows + "x" + cols + ", current dimensions are " + arg.length + "x" + arg[0].length);
+ return 0;
+ }
+ for(var r=0; r<rows; r++) {
+ for(var c=0; c<cols; c++) {
+ m[r][c]+=arg[r][c];
+ }
+ }
+ }
+ return m; // Array
+ },
+ inverse: function(/* Array */a){
+ // summary
+ // Return the inversion of the passed matrix
+ if(a.length==1 && a[0].length==1){
+ return [[1/a[0][0]]]; // Array
+ }
+ var tms=a.length, m=this.create(tms, tms), mm=this.adjoint(a), det=this.determinant(a), dd=0;
+ if(det==0){
+ console.warn("Determinant Equals 0, Not Invertible.");
+ return [[0]];
+ }else{
+ dd=1/det;
+ }
+ for(var i=0; i<tms; i++) {
+ for (var j=0; j<tms; j++) {
+ m[i][j]=dd*mm[i][j];
+ }
+ }
+ return m; // Array
+ },
+ determinant: function(/* Array */a){
+ // summary
+ // Calculate the determinant of the passed square matrix.
+ if(a.length!=a[0].length){
+ console.warn("Can't calculate the determinant of a non-squre matrix!");
+ return 0;
+ }
+ var tms=a.length, det=1, b=this.upperTriangle(a);
+ for (var i=0; i<tms; i++){
+ var bii=b[i][i];
+ if (Math.abs(bii)<this.ALMOST_ZERO) {
+ return 0; // Number
+ }
+ det*=bii;
+ }
+ det*=this.iDF;
+ return det; // Number
+ },
+ upperTriangle: function(/* Array */m){
+ // Summary
+ // Find the upper triangle of the passed matrix and return it.
+ m=this.copy(m);
+ var f1=0, temp=0, tms=m.length, v=1;
+ this.iDF=1;
+ for(var col=0; col<tms-1; col++){
+ if(typeof m[col][col]!="number") {
+ console.warn("non-numeric entry found in a numeric matrix: m[" + col + "][" + col + "]=" + m[col][col]);
+ }
+ v=1;
+ var stop_loop=0;
+ while((m[col][col] == 0) && !stop_loop){
+ if (col+v>=tms){
+ this.iDF=0;
+ stop_loop=1;
+ }else{
+ for(var r=0; r<tms; r++){
+ temp=m[col][r];
+ m[col][r]=m[col+v][r];
+ m[col+v][r]=temp;
+ }
+ v++;
+ this.iDF*=-1;
+ }
+ }
+ for(var row=col+1; row<tms; row++){
+ if(typeof m[row][col]!="number"){
+ console.warn("non-numeric entry found in a numeric matrix: m[" + row + "][" + col + "]=" + m[row][col]);
+ }
+ if(typeof m[col][row]!="number"){
+ console.warn("non-numeric entry found in a numeric matrix: m[" + col + "][" + row + "]=" + m[col][row]);
+ }
+ if(m[col][col]!=0){
+ var f1=(-1)* m[row][col]/m[col][col];
+ for (var i=col; i<tms; i++){
+ m[row][i]=f1*m[col][i]+m[row][i];
+ }
+ }
+ }
+ }
+ return m; // Array
+ },
+ create: function(/* Number */a, /* Number */b, /* Number? */value){
+ // summary
+ // Create a new matrix with rows a and cols b, and pre-populate with value.
+ value=value||0;
+ var m=[];
+ for (var i=0; i<b; i++){
+ m[i]=[];
+ for(var j=0; j<a; j++) {
+ m[i][j]=value;
+ }
+ }
+ return m; // Array
+ },
+ ones: function(/* Number */a, /* Number */b){
+ // summary
+ // Create a matrix pre-populated with ones
+ return this.create(a, b, 1); // Array
+ },
+ zeros: function(/* Number */a, /* Number */b){
+ // summary
+ // Create a matrix pre-populated with zeros
+ return this.create(a, b); // Array
+ },
+ identity: function(/* Number */size, /* Number? */scale){
+ // summary
+ // Create an identity matrix based on the size and scale.
+ scale=scale||1;
+ var m=[];
+ for(var i=0; i<size; i++){
+ m[i]=[];
+ for(var j=0; j<size; j++){
+ m[i][j]=(i==j?scale:0);
+ }
+ }
+ return m; // Array
+ },
+ adjoint: function(/* Array */a){
+ // summary
+ // Find the adjoint of the passed matrix
+ var tms=a.length;
+ if(tms<=1){
+ console.warn("Can't find the adjoint of a matrix with a dimension less than 2");
+ return [[0]];
+ }
+ if(a.length!=a[0].length){
+ console.warn("Can't find the adjoint of a non-square matrix");
+ return [[0]];
+ }
+ var m=this.create(tms, tms), ap=this.create(tms-1, tms-1);
+ var ii=0, jj=0, ia=0, ja=0, det=0;
+ for(var i=0; i<tms; i++){
+ for (var j=0; j<tms; j++){
+ ia=0;
+ for(ii=0; ii<tms; ii++){
+ if(ii==i){
+ continue;
+ }
+ ja = 0;
+ for(jj=0; jj<tms; jj++){
+ if(jj==j){
+ continue;
+ }
+ ap[ia][ja] = a[ii][jj];
+ ja++;
+ }
+ ia++;
+ }
+ det=this.determinant(ap);
+ m[i][j]=Math.pow(-1, (i+j))*det;
+ }
+ }
+ return this.transpose(m); // Array
+ },
+ transpose: function(/* Array */a){
+ // summary
+ // Transpose the passed matrix (i.e. rows to columns)
+ var m=this.create(a.length, a[0].length);
+ for(var i=0; i<a.length; i++){
+ for(var j=0; j<a[i].length; j++){
+ m[j][i]=a[i][j];
+ }
+ }
+ return m; // Array
+ },
+ format: function(/* Array */a, /* Number? */points){
+ // summary
+ // Return a string representation of the matrix, rounded to points (if needed)
+ points=points||5;
+ function format_int(x, dp){
+ var fac=Math.pow(10, dp);
+ var a=Math.round(x*fac)/fac;
+ var b=a.toString();
+ if(b.charAt(0)!="-"){
+ b=" "+b;
+ }
+ if(b.indexOf(".")>-1){
+ b+=".";
+ }
+ while(b.length<dp+3){
+ b+="0";
+ }
+ return b;
+ }
+ var ya=a.length;
+ var xa=ya>0?a[0].length:0;
+ var buffer="";
+ for(var y=0; y<ya; y++){
+ buffer+="| ";
+ for(var x=0; x<xa; x++){
+ buffer+=format_int(a[y][x], points)+" ";
+ }
+ buffer+="|\n";
+ }
+ return buffer; // string
+ },
+ copy: function(/* Array */a){
+ // summary
+ // Create a copy of the passed matrix
+ var ya=a.length, xa=a[0].length, m=this.create(xa, ya);
+ for(var y=0; y<ya; y++){
+ for(var x=0; x<xa; x++){
+ m[y][x]=a[y][x];
+ }
+ }
+ return m; // Array
+ },
+ scale: function(/* Array */a, /* Number */factor){
+ // summary
+ // Create a copy of passed matrix and scale each member by factor.
+ a=this.copy(a);
+ var ya=a.length, xa=a[0].length;
+ for(var y=0; y<ya; y++){
+ for(var x=0; x<xa; x++){
+ a[y][x]*=factor;
+ }
+ }
+ return a;
+ }
+});
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/random/Secure.js b/js/dojo-1.6/dojox/math/random/Secure.js
new file mode 100644
index 0000000..fe87a32
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/random/Secure.js
@@ -0,0 +1,107 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.random.Secure"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.random.Secure"] = true;
+dojo.provide("dojox.math.random.Secure");
+
+
+
+// Copyright (c) 2005 Tom Wu
+// All Rights Reserved.
+// See "LICENSE-BigInteger" for details.
+
+// Random number generator - requires a PRNG backend, e.g. prng4.js
+
+dojo.declare("dojox.math.random.Secure", null, {
+ // summary:
+ // Super simple implementation of a random number generator,
+ // which relies on Math.random().
+
+ constructor: function(prng, noEvents){
+ // summary:
+ // Intializes an instance of a secure random generator.
+ // prng: Function:
+ // function that returns an instance of PRNG (pseudorandom number generator)
+ // with two methods: init(array) and next(). It should have a property "size"
+ // to indicate the required pool size.
+ // noEvents: Boolean?:
+ // if false or absent, onclick and onkeypress event will be used to add
+ // "randomness", otherwise events will not be used.
+ this.prng = prng;
+
+ // Initialize the pool with junk if needed.
+ var p = this.pool = new Array(prng.size);
+ this.pptr = 0;
+ for(var i = 0, len = prng.size; i < len;) { // extract some randomness from Math.random()
+ var t = Math.floor(65536 * Math.random());
+ p[i++] = t >>> 8;
+ p[i++] = t & 255;
+ }
+ this.seedTime();
+
+ if(!noEvents){
+ this.h = [
+ dojo.connect(dojo.body(), "onclick", this, "seedTime"),
+ dojo.connect(dojo.body(), "onkeypress", this, "seedTime")
+ ];
+ }
+ },
+
+ destroy: function(){
+ // summary:
+ // Disconnects events, if any, preparing the object for GC.
+ if(this.h){
+ dojo.forEach(this.h, dojo.disconnect);
+ }
+ },
+
+ nextBytes: function(/* Array */ byteArray){
+ // summary:
+ // Fills in an array of bytes with random numbers
+ // byteArray: Array:
+ // array to be filled in with random numbers, only existing
+ // elements will be filled.
+
+ var state = this.state;
+
+ if(!state){
+ this.seedTime();
+ state = this.state = this.prng();
+ state.init(this.pool);
+ for(var p = this.pool, i = 0, len = p.length; i < len; p[i++] = 0);
+ this.pptr = 0;
+ //this.pool = null;
+ }
+
+ for(var i = 0, len = byteArray.length; i < len; ++i){
+ byteArray[i] = state.next();
+ }
+ },
+
+ seedTime: function() {
+ // summary:
+ // Mix in the current time (w/milliseconds) into the pool
+ this._seed_int(new Date().getTime());
+ },
+
+ _seed_int: function(x) {
+ // summary:
+ // Mix in a 32-bit integer into the pool
+ var p = this.pool, i = this.pptr;
+ p[i++] ^= x & 255;
+ p[i++] ^= (x >> 8) & 255;
+ p[i++] ^= (x >> 16) & 255;
+ p[i++] ^= (x >> 24) & 255;
+ if(i >= this.prng.size){
+ i -= this.prng.size;
+ }
+ this.pptr = i;
+ }
+});
+
+}
diff --git a/js/dojo-1.6/dojox/math/random/Secure.xd.js b/js/dojo-1.6/dojox/math/random/Secure.xd.js
new file mode 100644
index 0000000..659390c
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/random/Secure.xd.js
@@ -0,0 +1,111 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.random.Secure"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.random.Secure"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.random.Secure"] = true;
+dojo.provide("dojox.math.random.Secure");
+
+
+
+// Copyright (c) 2005 Tom Wu
+// All Rights Reserved.
+// See "LICENSE-BigInteger" for details.
+
+// Random number generator - requires a PRNG backend, e.g. prng4.js
+
+dojo.declare("dojox.math.random.Secure", null, {
+ // summary:
+ // Super simple implementation of a random number generator,
+ // which relies on Math.random().
+
+ constructor: function(prng, noEvents){
+ // summary:
+ // Intializes an instance of a secure random generator.
+ // prng: Function:
+ // function that returns an instance of PRNG (pseudorandom number generator)
+ // with two methods: init(array) and next(). It should have a property "size"
+ // to indicate the required pool size.
+ // noEvents: Boolean?:
+ // if false or absent, onclick and onkeypress event will be used to add
+ // "randomness", otherwise events will not be used.
+ this.prng = prng;
+
+ // Initialize the pool with junk if needed.
+ var p = this.pool = new Array(prng.size);
+ this.pptr = 0;
+ for(var i = 0, len = prng.size; i < len;) { // extract some randomness from Math.random()
+ var t = Math.floor(65536 * Math.random());
+ p[i++] = t >>> 8;
+ p[i++] = t & 255;
+ }
+ this.seedTime();
+
+ if(!noEvents){
+ this.h = [
+ dojo.connect(dojo.body(), "onclick", this, "seedTime"),
+ dojo.connect(dojo.body(), "onkeypress", this, "seedTime")
+ ];
+ }
+ },
+
+ destroy: function(){
+ // summary:
+ // Disconnects events, if any, preparing the object for GC.
+ if(this.h){
+ dojo.forEach(this.h, dojo.disconnect);
+ }
+ },
+
+ nextBytes: function(/* Array */ byteArray){
+ // summary:
+ // Fills in an array of bytes with random numbers
+ // byteArray: Array:
+ // array to be filled in with random numbers, only existing
+ // elements will be filled.
+
+ var state = this.state;
+
+ if(!state){
+ this.seedTime();
+ state = this.state = this.prng();
+ state.init(this.pool);
+ for(var p = this.pool, i = 0, len = p.length; i < len; p[i++] = 0);
+ this.pptr = 0;
+ //this.pool = null;
+ }
+
+ for(var i = 0, len = byteArray.length; i < len; ++i){
+ byteArray[i] = state.next();
+ }
+ },
+
+ seedTime: function() {
+ // summary:
+ // Mix in the current time (w/milliseconds) into the pool
+ this._seed_int(new Date().getTime());
+ },
+
+ _seed_int: function(x) {
+ // summary:
+ // Mix in a 32-bit integer into the pool
+ var p = this.pool, i = this.pptr;
+ p[i++] ^= x & 255;
+ p[i++] ^= (x >> 8) & 255;
+ p[i++] ^= (x >> 16) & 255;
+ p[i++] ^= (x >> 24) & 255;
+ if(i >= this.prng.size){
+ i -= this.prng.size;
+ }
+ this.pptr = i;
+ }
+});
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/random/Simple.js b/js/dojo-1.6/dojox/math/random/Simple.js
new file mode 100644
index 0000000..f57c8bf
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/random/Simple.js
@@ -0,0 +1,36 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.random.Simple"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.random.Simple"] = true;
+dojo.provide("dojox.math.random.Simple");
+
+
+
+dojo.declare("dojox.math.random.Simple", null, {
+ // summary:
+ // Super simple implementation of a random number generator,
+ // which relies on Math.random().
+
+ destroy: function(){
+ // summary:
+ // Prepares the object for GC. (empty in this case)
+ },
+
+ nextBytes: function(/* Array */ byteArray){
+ // summary:
+ // Fills in an array of bytes with random numbers
+ // byteArray: Array:
+ // array to be filled in with random numbers, only existing
+ // elements will be filled.
+ for(var i = 0, l = byteArray.length; i < l; ++i){
+ byteArray[i] = Math.floor(256 * Math.random());
+ }
+ }
+});
+
+}
diff --git a/js/dojo-1.6/dojox/math/random/Simple.xd.js b/js/dojo-1.6/dojox/math/random/Simple.xd.js
new file mode 100644
index 0000000..53e4283
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/random/Simple.xd.js
@@ -0,0 +1,40 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.random.Simple"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.random.Simple"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.random.Simple"] = true;
+dojo.provide("dojox.math.random.Simple");
+
+
+
+dojo.declare("dojox.math.random.Simple", null, {
+ // summary:
+ // Super simple implementation of a random number generator,
+ // which relies on Math.random().
+
+ destroy: function(){
+ // summary:
+ // Prepares the object for GC. (empty in this case)
+ },
+
+ nextBytes: function(/* Array */ byteArray){
+ // summary:
+ // Fills in an array of bytes with random numbers
+ // byteArray: Array:
+ // array to be filled in with random numbers, only existing
+ // elements will be filled.
+ for(var i = 0, l = byteArray.length; i < l; ++i){
+ byteArray[i] = Math.floor(256 * Math.random());
+ }
+ }
+});
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/random/prng4.js b/js/dojo-1.6/dojox/math/random/prng4.js
new file mode 100644
index 0000000..c180368
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/random/prng4.js
@@ -0,0 +1,69 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.random.prng4"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.random.prng4"] = true;
+dojo.provide("dojox.math.random.prng4");
+
+
+dojo.getObject("math.random.prng4", true, dojox);
+
+// Copyright (c) 2005 Tom Wu
+// All Rights Reserved.
+// See "LICENSE-BigInteger" for details.
+
+(function(){
+ // prng4.js - uses Arcfour as a PRNG
+
+ function Arcfour() {
+ this.i = 0;
+ this.j = 0;
+ this.S = new Array(256);
+ }
+
+ dojo.extend(Arcfour, {
+ init: function(key){
+ // summary:
+ // Initialize arcfour context
+ // key: Array:
+ // an array of ints, each from [0..255]
+ var i, j, t, S = this.S, len = key.length;
+ for(i = 0; i < 256; ++i){
+ S[i] = i;
+ }
+ j = 0;
+ for(i = 0; i < 256; ++i){
+ j = (j + S[i] + key[i % len]) & 255;
+ t = S[i];
+ S[i] = S[j];
+ S[j] = t;
+ }
+ this.i = 0;
+ this.j = 0;
+ },
+
+ next: function(){
+ var t, i, j, S = this.S;
+ this.i = i = (this.i + 1) & 255;
+ this.j = j = (this.j + S[i]) & 255;
+ t = S[i];
+ S[i] = S[j];
+ S[j] = t;
+ return S[(t + S[i]) & 255];
+ }
+ });
+
+ dojox.math.random.prng4 = function(){
+ return new Arcfour();
+ };
+
+ // Pool size must be a multiple of 4 and greater than 32.
+ // An array of bytes the size of the pool will be passed to init()
+ dojox.math.random.prng4.size = 256;
+})();
+
+}
diff --git a/js/dojo-1.6/dojox/math/random/prng4.xd.js b/js/dojo-1.6/dojox/math/random/prng4.xd.js
new file mode 100644
index 0000000..dac3455
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/random/prng4.xd.js
@@ -0,0 +1,73 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.random.prng4"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.random.prng4"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.random.prng4"] = true;
+dojo.provide("dojox.math.random.prng4");
+
+
+dojo.getObject("math.random.prng4", true, dojox);
+
+// Copyright (c) 2005 Tom Wu
+// All Rights Reserved.
+// See "LICENSE-BigInteger" for details.
+
+(function(){
+ // prng4.js - uses Arcfour as a PRNG
+
+ function Arcfour() {
+ this.i = 0;
+ this.j = 0;
+ this.S = new Array(256);
+ }
+
+ dojo.extend(Arcfour, {
+ init: function(key){
+ // summary:
+ // Initialize arcfour context
+ // key: Array:
+ // an array of ints, each from [0..255]
+ var i, j, t, S = this.S, len = key.length;
+ for(i = 0; i < 256; ++i){
+ S[i] = i;
+ }
+ j = 0;
+ for(i = 0; i < 256; ++i){
+ j = (j + S[i] + key[i % len]) & 255;
+ t = S[i];
+ S[i] = S[j];
+ S[j] = t;
+ }
+ this.i = 0;
+ this.j = 0;
+ },
+
+ next: function(){
+ var t, i, j, S = this.S;
+ this.i = i = (this.i + 1) & 255;
+ this.j = j = (this.j + S[i]) & 255;
+ t = S[i];
+ S[i] = S[j];
+ S[j] = t;
+ return S[(t + S[i]) & 255];
+ }
+ });
+
+ dojox.math.random.prng4 = function(){
+ return new Arcfour();
+ };
+
+ // Pool size must be a multiple of 4 and greater than 32.
+ // An array of bytes the size of the pool will be passed to init()
+ dojox.math.random.prng4.size = 256;
+})();
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/round.js b/js/dojo-1.6/dojox/math/round.js
new file mode 100644
index 0000000..244aacf
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/round.js
@@ -0,0 +1,75 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.round"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.round"] = true;
+dojo.provide("dojox.math.round");
+
+
+dojo.getObject("math.round", true, dojox);
+dojo.experimental("dojox.math.round");
+
+dojox.math.round = function(/*Number*/value, /*Number?*/places, /*Number?*/increment){
+ // summary:
+ // Similar to dojo.number.round, but compensates for binary floating point artifacts
+ // description:
+ // Rounds to the nearest value with the given number of decimal places, away from zero if equal,
+ // similar to Number.toFixed(). Rounding can be done by fractional increments also.
+ // Makes minor adjustments to accommodate for precision errors due to binary floating point representation
+ // of Javascript Numbers. See http://speleotrove.com/decimal/decifaq.html for more information.
+ // Because of this adjustment, the rounding may not be mathematically correct for full precision
+ // floating point values. The calculations assume 14 significant figures, so the accuracy will
+ // be limited to a certain number of decimal places preserved will vary with the magnitude of
+ // the input. This is not a substitute for decimal arithmetic.
+ // value:
+ // The number to round
+ // places:
+ // The number of decimal places where rounding takes place. Defaults to 0 for whole rounding.
+ // Must be non-negative.
+ // increment:
+ // Rounds next place to nearest value of increment/10. 10 by default.
+ // example:
+ // >>> 4.8-(1.1+2.2)
+ // 1.4999999999999996
+ // >>> Math.round(4.8-(1.1+2.2))
+ // 1
+ // >>> dojox.math.round(4.8-(1.1+2.2))
+ // 2
+ // >>> ((4.8-(1.1+2.2))/100)
+ // 0.014999999999999996
+ // >>> ((4.8-(1.1+2.2))/100).toFixed(2)
+ // "0.01"
+ // >>> dojox.math.round((4.8-(1.1+2.2))/100,2)
+ // 0.02
+ // >>> dojox.math.round(10.71, 0, 2.5)
+ // 10.75
+ // >>> dojo.number.round(162.295, 2)
+ // 162.29
+ // >>> dojox.math.round(162.295, 2)
+ // 162.3
+ var wholeFigs = Math.log(Math.abs(value))/Math.log(10);
+ var factor = 10 / (increment || 10);
+ var delta = Math.pow(10, -15 + wholeFigs);
+ return (factor * (+value + (value > 0 ? delta : -delta))).toFixed(places) / factor; // Number
+}
+
+if((0.9).toFixed() == 0){
+ // (isIE) toFixed() bug workaround: Rounding fails on IE when most significant digit
+ // is just after the rounding place and is >=5
+ (function(){
+ var round = dojox.math.round;
+ dojox.math.round = function(v, p, m){
+ var d = Math.pow(10, -p || 0), a = Math.abs(v);
+ if(!v || a >= d || a * Math.pow(10, p + 1) < 5){
+ d = 0;
+ }
+ return round(v, p, m) + (v > 0 ? d : -d);
+ }
+ })();
+}
+
+}
diff --git a/js/dojo-1.6/dojox/math/round.xd.js b/js/dojo-1.6/dojox/math/round.xd.js
new file mode 100644
index 0000000..5ae88c6
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/round.xd.js
@@ -0,0 +1,79 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.round"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.round"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.round"] = true;
+dojo.provide("dojox.math.round");
+
+
+dojo.getObject("math.round", true, dojox);
+dojo.experimental("dojox.math.round");
+
+dojox.math.round = function(/*Number*/value, /*Number?*/places, /*Number?*/increment){
+ // summary:
+ // Similar to dojo.number.round, but compensates for binary floating point artifacts
+ // description:
+ // Rounds to the nearest value with the given number of decimal places, away from zero if equal,
+ // similar to Number.toFixed(). Rounding can be done by fractional increments also.
+ // Makes minor adjustments to accommodate for precision errors due to binary floating point representation
+ // of Javascript Numbers. See http://speleotrove.com/decimal/decifaq.html for more information.
+ // Because of this adjustment, the rounding may not be mathematically correct for full precision
+ // floating point values. The calculations assume 14 significant figures, so the accuracy will
+ // be limited to a certain number of decimal places preserved will vary with the magnitude of
+ // the input. This is not a substitute for decimal arithmetic.
+ // value:
+ // The number to round
+ // places:
+ // The number of decimal places where rounding takes place. Defaults to 0 for whole rounding.
+ // Must be non-negative.
+ // increment:
+ // Rounds next place to nearest value of increment/10. 10 by default.
+ // example:
+ // >>> 4.8-(1.1+2.2)
+ // 1.4999999999999996
+ // >>> Math.round(4.8-(1.1+2.2))
+ // 1
+ // >>> dojox.math.round(4.8-(1.1+2.2))
+ // 2
+ // >>> ((4.8-(1.1+2.2))/100)
+ // 0.014999999999999996
+ // >>> ((4.8-(1.1+2.2))/100).toFixed(2)
+ // "0.01"
+ // >>> dojox.math.round((4.8-(1.1+2.2))/100,2)
+ // 0.02
+ // >>> dojox.math.round(10.71, 0, 2.5)
+ // 10.75
+ // >>> dojo.number.round(162.295, 2)
+ // 162.29
+ // >>> dojox.math.round(162.295, 2)
+ // 162.3
+ var wholeFigs = Math.log(Math.abs(value))/Math.log(10);
+ var factor = 10 / (increment || 10);
+ var delta = Math.pow(10, -15 + wholeFigs);
+ return (factor * (+value + (value > 0 ? delta : -delta))).toFixed(places) / factor; // Number
+}
+
+if((0.9).toFixed() == 0){
+ // (isIE) toFixed() bug workaround: Rounding fails on IE when most significant digit
+ // is just after the rounding place and is >=5
+ (function(){
+ var round = dojox.math.round;
+ dojox.math.round = function(v, p, m){
+ var d = Math.pow(10, -p || 0), a = Math.abs(v);
+ if(!v || a >= d || a * Math.pow(10, p + 1) < 5){
+ d = 0;
+ }
+ return round(v, p, m) + (v > 0 ? d : -d);
+ }
+ })();
+}
+
+}
+
+}};});
diff --git a/js/dojo-1.6/dojox/math/stats.js b/js/dojo-1.6/dojox/math/stats.js
new file mode 100644
index 0000000..9fb61fa
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/stats.js
@@ -0,0 +1,204 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+if(!dojo._hasResource["dojox.math.stats"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.stats"] = true;
+dojo.provide("dojox.math.stats");
+
+
+dojo.getObject("math.stats", true, dojox);
+
+(function(){
+ var st = dojox.math.stats;
+ dojo.mixin(st, {
+ sd: function(/* Number[] */a){
+ // summary:
+ // Returns the standard deviation of the passed arguments.
+ return Math.sqrt(st.variance(a)); // Number
+ },
+
+ variance: function(/* Number[] */a){
+ // summary:
+ // Find the variance in the passed array of numbers.
+ var mean=0, squares=0;
+ dojo.forEach(a, function(item){
+ mean+=item;
+ squares+=Math.pow(item,2);
+ });
+ return (squares/a.length)-Math.pow(mean/a.length, 2); // Number
+ },
+
+ bestFit: function(/* Object[] || Number[] */a, /* String? */xProp, /* String? */yProp){
+ // summary:
+ // Calculate the slope and intercept in a linear fashion. An array
+ // of objects is expected; optionally you can pass in the property
+ // names for "x" and "y", else x/y is used as the default. If you
+ // pass an array of numbers, it will be mapped to a set of {x,y} objects
+ // where x = the array index.
+ xProp = xProp || "x", yProp = yProp || "y";
+ if(a[0] !== undefined && typeof(a[0]) == "number"){
+ // this is an array of numbers, so use the index as x.
+ a = dojo.map(a, function(item, idx){
+ return { x: idx, y: item };
+ });
+ }
+
+ var sx = 0, sy = 0, sxx = 0, syy = 0, sxy = 0, stt = 0, sts = 0, n = a.length, t;
+ for(var i=0; i<n; i++){
+ sx += a[i][xProp];
+ sy += a[i][yProp];
+ sxx += Math.pow(a[i][xProp], 2);
+ syy += Math.pow(a[i][yProp], 2);
+ sxy += a[i][xProp] * a[i][yProp];
+ }
+
+ // we use the following because it's more efficient and accurate for determining the slope.
+ for(i=0; i<n; i++){
+ t = a[i][xProp] - sx/n;
+ stt += t*t;
+ sts += t*a[i][yProp];
+ }
+ var slope = sts/(stt||1); // prevent divide by zero.
+
+ // get Pearson's R
+ var d = Math.sqrt((sxx - Math.pow(sx,2)/n) * (syy - Math.pow(sy,2)/n));
+ if(d === 0){
+ throw new Error("dojox.math.stats.bestFit: the denominator for Pearson's R is 0.");
+ }
+
+ var r = (sxy-(sx*sy/n)) / d;
+ var r2 = Math.pow(r, 2);
+ if(slope < 0){
+ r = -r;
+ }
+
+ // to use: y = slope*x + intercept;
+ return { // Object
+ slope: slope,
+ intercept: (sy - sx*slope)/(n||1),
+ r: r,
+ r2: r2
+ };
+ },
+
+ forecast: function(/* Object[] || Number[] */a, /* Number */x, /* String? */xProp, /* String? */yProp){
+ // summary:
+ // Using the bestFit algorithm above, find y for the given x.
+ var fit = st.bestFit(a, xProp, yProp);
+ return (fit.slope * x) + fit.intercept; // Number
+ },
+
+ mean: function(/* Number[] */a){
+ // summary:
+ // Returns the mean value in the passed array.
+ var t=0;
+ dojo.forEach(a, function(v){
+ t += v;
+ });
+ return t / Math.max(a.length, 1); // Number
+ },
+
+ min: function(/* Number[] */a){
+ // summary:
+ // Returns the min value in the passed array.
+ return Math.min.apply(null, a); // Number
+ },
+
+ max: function(/* Number[] */a){
+ // summary:
+ // Returns the max value in the passed array.
+ return Math.max.apply(null, a); // Number
+ },
+
+ median: function(/* Number[] */a){
+ // summary:
+ // Returns the value closest to the middle from a sorted version of the passed array.
+ var t = a.slice(0).sort(function(a, b){ return a - b; });
+ return (t[Math.floor(a.length/2)] + t[Math.ceil(a.length/2)])/2; // Number
+ },
+
+ mode: function(/* Number[] */a){
+ // summary:
+ // Returns the mode from the passed array (number that appears the most often).
+ // This is not the most efficient method, since it requires a double scan, but
+ // is ensures accuracy.
+ var o = {}, r = 0, m = Number.MIN_VALUE;
+ dojo.forEach(a, function(v){
+ (o[v]!==undefined)?o[v]++:o[v]=1;
+ });
+
+ // we did the lookup map because we need the number that appears the most.
+ for(var p in o){
+ if(m < o[p]){
+ m = o[p], r = p;
+ }
+ }
+ return r; // Number
+ },
+
+ sum: function(/* Number[] */a){
+ // summary:
+ // Return the sum of all the numbers in the passed array. Does
+ // not check to make sure values within a are NaN (should simply
+ // return NaN).
+ var sum = 0;
+ dojo.forEach(a, function(n){
+ sum += n;
+ });
+ return sum; // Number
+ },
+
+ approxLin: function(a, pos){
+ // summary:
+ // Returns a linearly approximated value from an array using
+ // a normalized float position value.
+ // a: Number[]:
+ // a sorted numeric array to be used for the approximation.
+ // pos: Number:
+ // a position number from 0 to 1. If outside of this range it
+ // will be clamped.
+ // returns: Number
+ var p = pos * (a.length - 1), t = Math.ceil(p), f = t - 1;
+ if(f < 0){ return a[0]; }
+ if(t >= a.length){ return a[a.length - 1]; }
+ return a[f] * (t - p) + a[t] * (p - f); // Number
+ },
+
+ summary: function(a, alreadySorted){
+ // summary:
+ // Returns a non-parametric collection of summary statistics:
+ // the classic five-number summary extended to the Bowley's
+ // seven-figure summary.
+ // a: Number[]:
+ // a numeric array to be appraised.
+ // alreadySorted: Boolean?:
+ // a Boolean flag to indicated that the array is already sorted.
+ // This is an optional flag purely to improve the performance.
+ // If skipped, the array will be assumed unsorted.
+ // returns: Object
+ if(!alreadySorted){
+ a = a.slice(0); // copy the array
+ a.sort(function(a, b){ return a - b; }); // sort it properly
+ }
+ var l = st.approxLin,
+ result = {
+ // the five-number summary
+ min: a[0], // minimum
+ p25: l(a, 0.25), // lower quartile
+ med: l(a, 0.5), // median
+ p75: l(a, 0.75), // upper quartile
+ max: a[a.length - 1], // maximum
+ // extended to the Bowley's seven-figure summary
+ p10: l(a, 0.1), // first decile
+ p90: l(a, 0.9) // last decile
+ };
+ return result; // Object
+ }
+ });
+})();
+
+}
diff --git a/js/dojo-1.6/dojox/math/stats.xd.js b/js/dojo-1.6/dojox/math/stats.xd.js
new file mode 100644
index 0000000..314c40c
--- /dev/null
+++ b/js/dojo-1.6/dojox/math/stats.xd.js
@@ -0,0 +1,208 @@
+/*
+ Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
+ Available via Academic Free License >= 2.1 OR the modified BSD license.
+ see: http://dojotoolkit.org/license for details
+*/
+
+
+dojo._xdResourceLoaded(function(dojo, dijit, dojox){
+return {depends: [["provide", "dojox.math.stats"]],
+defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.math.stats"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
+dojo._hasResource["dojox.math.stats"] = true;
+dojo.provide("dojox.math.stats");
+
+
+dojo.getObject("math.stats", true, dojox);
+
+(function(){
+ var st = dojox.math.stats;
+ dojo.mixin(st, {
+ sd: function(/* Number[] */a){
+ // summary:
+ // Returns the standard deviation of the passed arguments.
+ return Math.sqrt(st.variance(a)); // Number
+ },
+
+ variance: function(/* Number[] */a){
+ // summary:
+ // Find the variance in the passed array of numbers.
+ var mean=0, squares=0;
+ dojo.forEach(a, function(item){
+ mean+=item;
+ squares+=Math.pow(item,2);
+ });
+ return (squares/a.length)-Math.pow(mean/a.length, 2); // Number
+ },
+
+ bestFit: function(/* Object[] || Number[] */a, /* String? */xProp, /* String? */yProp){
+ // summary:
+ // Calculate the slope and intercept in a linear fashion. An array
+ // of objects is expected; optionally you can pass in the property
+ // names for "x" and "y", else x/y is used as the default. If you
+ // pass an array of numbers, it will be mapped to a set of {x,y} objects
+ // where x = the array index.
+ xProp = xProp || "x", yProp = yProp || "y";
+ if(a[0] !== undefined && typeof(a[0]) == "number"){
+ // this is an array of numbers, so use the index as x.
+ a = dojo.map(a, function(item, idx){
+ return { x: idx, y: item };
+ });
+ }
+
+ var sx = 0, sy = 0, sxx = 0, syy = 0, sxy = 0, stt = 0, sts = 0, n = a.length, t;
+ for(var i=0; i<n; i++){
+ sx += a[i][xProp];
+ sy += a[i][yProp];
+ sxx += Math.pow(a[i][xProp], 2);
+ syy += Math.pow(a[i][yProp], 2);
+ sxy += a[i][xProp] * a[i][yProp];
+ }
+
+ // we use the following because it's more efficient and accurate for determining the slope.
+ for(i=0; i<n; i++){
+ t = a[i][xProp] - sx/n;
+ stt += t*t;
+ sts += t*a[i][yProp];
+ }
+ var slope = sts/(stt||1); // prevent divide by zero.
+
+ // get Pearson's R
+ var d = Math.sqrt((sxx - Math.pow(sx,2)/n) * (syy - Math.pow(sy,2)/n));
+ if(d === 0){
+ throw new Error("dojox.math.stats.bestFit: the denominator for Pearson's R is 0.");
+ }
+
+ var r = (sxy-(sx*sy/n)) / d;
+ var r2 = Math.pow(r, 2);
+ if(slope < 0){
+ r = -r;
+ }
+
+ // to use: y = slope*x + intercept;
+ return { // Object
+ slope: slope,
+ intercept: (sy - sx*slope)/(n||1),
+ r: r,
+ r2: r2
+ };
+ },
+
+ forecast: function(/* Object[] || Number[] */a, /* Number */x, /* String? */xProp, /* String? */yProp){
+ // summary:
+ // Using the bestFit algorithm above, find y for the given x.
+ var fit = st.bestFit(a, xProp, yProp);
+ return (fit.slope * x) + fit.intercept; // Number
+ },
+
+ mean: function(/* Number[] */a){
+ // summary:
+ // Returns the mean value in the passed array.
+ var t=0;
+ dojo.forEach(a, function(v){
+ t += v;
+ });
+ return t / Math.max(a.length, 1); // Number
+ },
+
+ min: function(/* Number[] */a){
+ // summary:
+ // Returns the min value in the passed array.
+ return Math.min.apply(null, a); // Number
+ },
+
+ max: function(/* Number[] */a){
+ // summary:
+ // Returns the max value in the passed array.
+ return Math.max.apply(null, a); // Number
+ },
+
+ median: function(/* Number[] */a){
+ // summary:
+ // Returns the value closest to the middle from a sorted version of the passed array.
+ var t = a.slice(0).sort(function(a, b){ return a - b; });
+ return (t[Math.floor(a.length/2)] + t[Math.ceil(a.length/2)])/2; // Number
+ },
+
+ mode: function(/* Number[] */a){
+ // summary:
+ // Returns the mode from the passed array (number that appears the most often).
+ // This is not the most efficient method, since it requires a double scan, but
+ // is ensures accuracy.
+ var o = {}, r = 0, m = Number.MIN_VALUE;
+ dojo.forEach(a, function(v){
+ (o[v]!==undefined)?o[v]++:o[v]=1;
+ });
+
+ // we did the lookup map because we need the number that appears the most.
+ for(var p in o){
+ if(m < o[p]){
+ m = o[p], r = p;
+ }
+ }
+ return r; // Number
+ },
+
+ sum: function(/* Number[] */a){
+ // summary:
+ // Return the sum of all the numbers in the passed array. Does
+ // not check to make sure values within a are NaN (should simply
+ // return NaN).
+ var sum = 0;
+ dojo.forEach(a, function(n){
+ sum += n;
+ });
+ return sum; // Number
+ },
+
+ approxLin: function(a, pos){
+ // summary:
+ // Returns a linearly approximated value from an array using
+ // a normalized float position value.
+ // a: Number[]:
+ // a sorted numeric array to be used for the approximation.
+ // pos: Number:
+ // a position number from 0 to 1. If outside of this range it
+ // will be clamped.
+ // returns: Number
+ var p = pos * (a.length - 1), t = Math.ceil(p), f = t - 1;
+ if(f < 0){ return a[0]; }
+ if(t >= a.length){ return a[a.length - 1]; }
+ return a[f] * (t - p) + a[t] * (p - f); // Number
+ },
+
+ summary: function(a, alreadySorted){
+ // summary:
+ // Returns a non-parametric collection of summary statistics:
+ // the classic five-number summary extended to the Bowley's
+ // seven-figure summary.
+ // a: Number[]:
+ // a numeric array to be appraised.
+ // alreadySorted: Boolean?:
+ // a Boolean flag to indicated that the array is already sorted.
+ // This is an optional flag purely to improve the performance.
+ // If skipped, the array will be assumed unsorted.
+ // returns: Object
+ if(!alreadySorted){
+ a = a.slice(0); // copy the array
+ a.sort(function(a, b){ return a - b; }); // sort it properly
+ }
+ var l = st.approxLin,
+ result = {
+ // the five-number summary
+ min: a[0], // minimum
+ p25: l(a, 0.25), // lower quartile
+ med: l(a, 0.5), // median
+ p75: l(a, 0.75), // upper quartile
+ max: a[a.length - 1], // maximum
+ // extended to the Bowley's seven-figure summary
+ p10: l(a, 0.1), // first decile
+ p90: l(a, 0.9) // last decile
+ };
+ return result; // Object
+ }
+ });
+})();
+
+}
+
+}};});