summaryrefslogtreecommitdiff
path: root/js/dojo-1.7.2/dojox/encoding/crypto/SimpleAES.js
blob: 951b8a5ccf2b3183716707cdd592493b91722e88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
//>>built
define("dojox/encoding/crypto/SimpleAES", ["../base64", "./_base"], 
 function(base64, crypto){

	/*=====
		crypto = dojox.encoding.crypto;
	=====*/

	// Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [��5.1.1]
	var Sbox =	[0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
				 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
				 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
				 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
				 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
				 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
				 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
				 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
				 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
				 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
				 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
				 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
				 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
				 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
				 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
				 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16];

	// Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [��5.2]
	var Rcon = [ [0x00, 0x00, 0x00, 0x00],
				 [0x01, 0x00, 0x00, 0x00],
				 [0x02, 0x00, 0x00, 0x00],
				 [0x04, 0x00, 0x00, 0x00],
				 [0x08, 0x00, 0x00, 0x00],
				 [0x10, 0x00, 0x00, 0x00],
				 [0x20, 0x00, 0x00, 0x00],
				 [0x40, 0x00, 0x00, 0x00],
				 [0x80, 0x00, 0x00, 0x00],
				 [0x1b, 0x00, 0x00, 0x00],
				 [0x36, 0x00, 0x00, 0x00] ];

	/*
	 * AES Cipher function: encrypt 'input' with Rijndael algorithm
	 *
	 *	 takes	 byte-array 'input' (16 bytes)
	 *			 2D byte-array key schedule 'w' (Nr+1 x Nb bytes)
	 *
	 *	 applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage
	 *
	 *	 returns byte-array encrypted value (16 bytes)
	 */
	function Cipher(input, w) {	   // main Cipher function [��5.1]
	  var Nb = 4;				// block size (in words): no of columns in state (fixed at 4 for AES)
	  var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys

	  var state = [[],[],[],[]];  // initialise 4xNb byte-array 'state' with input [��3.4]
	  for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i];

	  state = AddRoundKey(state, w, 0, Nb);

	  for (var round=1; round<Nr; round++) {
		state = SubBytes(state, Nb);
		state = ShiftRows(state, Nb);
		state = MixColumns(state, Nb);
		state = AddRoundKey(state, w, round, Nb);
	  }

	  state = SubBytes(state, Nb);
	  state = ShiftRows(state, Nb);
	  state = AddRoundKey(state, w, Nr, Nb);

	  var output = new Array(4*Nb);	 // convert state to 1-d array before returning [��3.4]
	  for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)];
	  return output;
	}


	function SubBytes(s, Nb) {	  // apply SBox to state S [��5.1.1]
	  for (var r=0; r<4; r++) {
		for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]];
	  }
	  return s;
	}


	function ShiftRows(s, Nb) {	   // shift row r of state S left by r bytes [��5.1.2]
	  var t = new Array(4);
	  for (var r=1; r<4; r++) {
		for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb];	// shift into temp copy
		for (var c=0; c<4; c++) s[r][c] = t[c];			// and copy back
	  }			 // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
	  return s;	 // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf
	}


	function MixColumns(s, Nb) {   // combine bytes of each col of state S [��5.1.3]
	  for (var c=0; c<4; c++) {
		var a = new Array(4);  // 'a' is a copy of the current column from 's'
		var b = new Array(4);  // 'b' is a�ށ{02} in GF(2^8)
		for (var i=0; i<4; i++) {
		  a[i] = s[i][c];
		  b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1;
		}
		// a[n] ^ b[n] is a�ށ{03} in GF(2^8)
		s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3
		s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3
		s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3
		s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3
	  }
	  return s;
	}


	function AddRoundKey(state, w, rnd, Nb) {  // xor Round Key into state S [��5.1.4]
	  for (var r=0; r<4; r++) {
		for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r];
	  }
	  return state;
	}


	function KeyExpansion(key) {  // generate Key Schedule (byte-array Nr+1 x Nb) from Key [��5.2]
	  var Nb = 4;			 // block size (in words): no of columns in state (fixed at 4 for AES)
	  var Nk = key.length/4	 // key length (in words): 4/6/8 for 128/192/256-bit keys
	  var Nr = Nk + 6;		 // no of rounds: 10/12/14 for 128/192/256-bit keys

	  var w = new Array(Nb*(Nr+1));
	  var temp = new Array(4);

	  for (var i=0; i<Nk; i++) {
		var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]];
		w[i] = r;
	  }

	  for (var i=Nk; i<(Nb*(Nr+1)); i++) {
		w[i] = new Array(4);
		for (var t=0; t<4; t++) temp[t] = w[i-1][t];
		if (i % Nk == 0) {
		  temp = SubWord(RotWord(temp));
		  for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t];
		} else if (Nk > 6 && i%Nk == 4) {
		  temp = SubWord(temp);
		}
		for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t];
	  }

	  return w;
	}

	function SubWord(w) {	 // apply SBox to 4-byte word w
	  for (var i=0; i<4; i++) w[i] = Sbox[w[i]];
	  return w;
	}

	function RotWord(w) {	 // rotate 4-byte word w left by one byte
	  w[4] = w[0];
	  for (var i=0; i<4; i++) w[i] = w[i+1];
	  return w;
	}

	/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

	/*
	 * Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation
	 *							 - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
	 *	 for each block
	 *	 - outputblock = cipher(counter, key)
	 *	 - cipherblock = plaintext xor outputblock
	 */
	function AESEncryptCtr(plaintext, password, nBits) {
	  if (!(nBits==128 || nBits==192 || nBits==256)) return '';	 // standard allows 128/192/256 bit keys

	  // for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password;
	  // for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1
	  var nBytes = nBits/8;	 // no bytes in key
	  var pwBytes = new Array(nBytes);
	  for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff;

	  var key = Cipher(pwBytes, KeyExpansion(pwBytes));

	  key = key.concat(key.slice(0, nBytes-16));  // key is now 16/24/32 bytes long

	  // initialise counter block (NIST SP800-38A ��B.2): millisecond time-stamp for nonce in 1st 8 bytes,
	  // block counter in 2nd 8 bytes
	  var blockSize = 16;  // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
	  var counterBlock = new Array(blockSize);	// block size fixed at 16 bytes / 128 bits (Nb=4) for AES
	  var nonce = (new Date()).getTime();  // milliseconds since 1-Jan-1970

	  // encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops
	  for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff;
	  for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff;

	  // generate key schedule - an expansion of the key into distinct Key Rounds for each round
	  var keySchedule = KeyExpansion(key);

	  var blockCount = Math.ceil(plaintext.length/blockSize);
	  var ciphertext = new Array(blockCount);  // ciphertext as array of strings

	  for (var b=0; b<blockCount; b++) {
		// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
		// again done in two stages for 32-bit ops
		for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff;
		for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8)

		var cipherCntr = Cipher(counterBlock, keySchedule);	 // -- encrypt counter block --

		// calculate length of final block:
		var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1;

		var ct = '';
		for (var i=0; i<blockLength; i++) {	 // -- xor plaintext with ciphered counter byte-by-byte --
		  var plaintextByte = plaintext.charCodeAt(b*blockSize+i);
		  var cipherByte = plaintextByte ^ cipherCntr[i];
		  //ct += String.fromCharCode(cipherByte);
		  ct += ((cipherByte < 16) ? "0" : "") + cipherByte.toString(16);
		}
		// ct is now ciphertext for this block

		ciphertext[b] = ct; // escCtrlChars(ct);  // escape troublesome characters in ciphertext
	  }

	  // convert the nonce to a string to go on the front of the ciphertext
	  var ctrTxt = '';
	  for (var i=0; i<8; i++) ctrTxt += ((counterBlock[i] < 16) ? "0" : "") + counterBlock[i].toString(16); //String.fromCharCode(counterBlock[i]);
	  //ctrTxt = escCtrlChars(ctrTxt);

	  // use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency
	  return ctrTxt + ' ' + ciphertext.join(' ');
	}

	function stringToHex(s){
		var ret = [];
		s.replace(/(..)/g, function(str){
			ret.push(parseInt(str, 16));
		});
		return ret;
	}

	/*
	 * Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation
	 *
	 *	 for each block
	 *	 - outputblock = cipher(counter, key)
	 *	 - cipherblock = plaintext xor outputblock
	 */
	function AESDecryptCtr(ciphertext, password, nBits) {
	  if (!(nBits==128 || nBits==192 || nBits==256)) return '';	 // standard allows 128/192/256 bit keys

	  var nBytes = nBits/8;	 // no bytes in key
	  var pwBytes = new Array(nBytes);
	  for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff;
	  var pwKeySchedule = KeyExpansion(pwBytes);
	  var key = Cipher(pwBytes, pwKeySchedule);
	  key = key.concat(key.slice(0, nBytes-16));  // key is now 16/24/32 bytes long

	  var keySchedule = KeyExpansion(key);

	  ciphertext = ciphertext.split(' ');  // split ciphertext into array of block-length strings

	  // recover nonce from 1st element of ciphertext
	  var blockSize = 16;  // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
	  var counterBlock = new Array(blockSize);
	  var ctrTxt = ciphertext[0]; //unescCtrlChars(ciphertext[0]);
	  counterBlock = stringToHex(ctrTxt);

	  var plaintext = new Array(ciphertext.length-1);

	  for (var b=1; b<ciphertext.length; b++) {
		// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
		for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff;
		for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff;

		var cipherCntr = Cipher(counterBlock, keySchedule);	 // encrypt counter block

		//ciphertext[b] = ciphertext[b]; //unescCtrlChars(ciphertext[b]);

		var pt = '';
		var tmp = stringToHex(ciphertext[b]);
		for (var i=0; i<tmp.length; i++) {
		  // -- xor plaintext with ciphered counter byte-by-byte --
		  var ciphertextByte = ciphertext[b].charCodeAt(i);
		  var plaintextByte = tmp[i] ^ cipherCntr[i];
		  pt += String.fromCharCode(plaintextByte);
		}
		// pt is now plaintext for this block

		plaintext[b-1] = pt;  // b-1 'cos no initial nonce block in plaintext
	  }

	  return plaintext.join('');
	}

	/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

	function escCtrlChars(str) {  // escape control chars which might cause problems handling ciphertext
	  return str.replace(/[\0\t\n\v\f\r\xa0!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; });
	}  // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker

	function unescCtrlChars(str) {	// unescape potentially problematic control characters
	  return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); });
	}

	/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

	crypto.SimpleAES = new (function(){
		// summary:
		// 		SimpleAES, ported from dojox.sql, and done without the need for
		// 		a Google Gears worker pool.
		// description:
		//		Taken from http://www.movable-type.co.uk/scripts/aes.html by
		// 		Chris Veness (CLA signed); adapted for Dojo by Brad Neuberg
		// 		(bkn3 AT columbia.edu) and moved to DojoX crypto by Tom Trenka
		// 		(ttrenka AT gmail.com).
		//
		// 		A few notes:
		// 		1) This algorithm uses a customized version of CBC mode by creating
		// 		a nonce, using it as an initialization vector, and storing the
		// 		IV as the first portion of the encrypted text.  Because of this, it
		// 		is HIGHLY PROBABLE that it will NOT be usable by other AES implementations.
		// 		2) All encoding is done in hex format; other encoding formats (such
		// 		as base 64) are not supported.
		// 		3) The bit depth of the key is hardcoded at 256, despite the ability
		// 		of the code to handle all three recommended bit depths.
		// 		4) The passed key will be padded (as opposed to enforcing a strict
		// 		length) with null bytes.
		this.encrypt = function(/* String */plaintext, /* String */key){
			//	summary:
			//		Encrypt the passed plaintext using the key, with a
			//		hardcoded bit depth of 256.
			return AESEncryptCtr(plaintext, key, 256);	//	String
		};
		this.decrypt = function(/* String */ciphertext, /* String */key){
			//	summary:
			//		Decrypt the passed ciphertext using the key at a fixed
			//		bit depth of 256.
			return AESDecryptCtr(ciphertext, key, 256);	//	String
		};
	})();

	return crypto.SimpleAES;
});