1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
/*
Copyright (c) 2004-2011, The Dojo Foundation All Rights Reserved.
Available via Academic Free License >= 2.1 OR the modified BSD license.
see: http://dojotoolkit.org/license for details
*/
dojo._xdResourceLoaded(function(dojo, dijit, dojox){
return {depends: [["provide", "dojox.calc.toFrac"]],
defineResource: function(dojo, dijit, dojox){if(!dojo._hasResource["dojox.calc.toFrac"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
dojo._hasResource["dojox.calc.toFrac"] = true;
dojo.provide("dojox.calc.toFrac");
(function(){
var a = [];
var sqrts = [2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,
30,31,33,34,35,37,38,39,41,42,43,46,47,51,53,55,57,58,59,
61,62,65,66,67,69,70,71,73,74,77,78,79,82,83,85,86,87,89,91,93,94,95,97];
var _fracHashInitialized = false;
var i = -3;
var d = 2;
var epsilon = 1e-15 / 9;
function _fracHashInit(searchNumber){
// summary
// make a fairly large hash table of some fractions, sqrts, etc
var m, mt;
while(i < sqrts.length){
switch(i){
case -3:
m = 1;
mt = '';
break;
case -2:
m = Math.PI;
mt = 'pi';
break;
case -1:
m = Math.sqrt(Math.PI);
mt = '\u221A(pi)';
break;
default:
m = Math.sqrt(sqrts[i]);
mt = "\u221A(" + sqrts[i] + ")";
}
while(d <= 100){
for(n = 1; n < (m == 1 ? d : 100); n++){
var r = m * n / d;
var f = dojox.calc.approx(r);
if(!(f in a)){
// make sure that it is simplified so that toFrac(pi) doesn't get 2*pi/2
if(n==d){
n=1;
d=1;
}
a[f] = {n:n, d:d, m:m, mt:mt};
if(f == searchNumber){ searchNumber = undefined; } // found number, so return and finish hash in nbackground
}
}
d++;
if(searchNumber == undefined){
setTimeout(function(){ _fracHashInit() }, 1);
return;
}
}
d = 2;
i++;
}
_fracHashInitialized = true;
}
// this 1 is standard and the other is advanced and could be a
// separate dojo.require if the user wants the function (and slow init)
function isInt(n){
return Math.floor(n) == n;
}
// make the hash
_fracHashInit();
// advanced _fracLookup
function _fracLookup(number){
function retryWhenInitialized(){
_fracHashInit(number);
return _fracLookup(number);
}
number = Math.abs(number);
var f = a[dojox.calc.approx(number)];
if(!f && !_fracHashInitialized){
return retryWhenInitialized();
}
if(!f){
var i = Math.floor(number);
if(i == 0) { return _fracHashInitialized ? null : retryWhenInitialized(); }
var n = number % 1;
if(n == 0){
return { m: 1, mt: 1, n: number, d: 1 }
}
f = a[dojox.calc.approx(n)];
if(!f || f.m != 1){
var inv = dojox.calc.approx(1 / n);
return isInt(inv) ? { m: 1, mt: 1, n: 1, d: inv } : (_fracHashInitialized ? null : retryWhenInitialized());
}else{
return { m: 1, mt: 1, n: (i * f.d + f.n), d: f.d };
}
}
return f;
}
// add toFrac to the calculator
dojo.mixin(dojox.calc, {
toFrac: function(number){// get a string fraction for a decimal with a set range of numbers, based on the hash
var f = _fracLookup(number);
return f ? ((number < 0 ? '-' : '') + (f.m == 1 ? '' : (f.n == 1 ? '' : (f.n + '*'))) + (f.m == 1 ? f.n : f.mt) + ((f.d == 1 ? '' : '/' + f.d))) : number;
//return f ? ((number < 0 ? '-' : '') + (f.m == 1 ? '' : (f.n == 1 ? '' : (f.n + '*'))) + (f.m == 1 ? f.n : f.mt) + '/' + f.d) : number;
},
pow: function(base, exponent){// pow benefits from toFrac because it can overcome many of the limitations set before the standard Math.pow
// summary:
// Computes base ^ exponent
// Wrapper to Math.pow(base, exponent) to handle (-27) ^ (1/3)
if(base>0||isInt(exponent)){
return Math.pow(base, exponent);
}else{
var f = _fracLookup(exponent);
if(base >= 0){
return (f && f.m == 1)
? Math.pow(Math.pow(base, 1 / f.d), exponent < 0 ? -f.n : f.n) // 32 ^ (2/5) is much more accurate if done as (32 ^ (1/5)) ^ 2
: Math.pow(base, exponent);
}else{ // e.g. (1/3) root of -27 = -3, 1 / exponent must be an odd integer for a negative base
return (f && f.d & 1) ? Math.pow(Math.pow(-Math.pow(-base, 1 / f.d), exponent < 0 ? -f.n : f.n), f.m) : NaN;
}
}
}
});
/*
function reduceError(number){
var f = _fracLookup(number);
if(!f){ f = _fracLookup(number); }
return f ? ((number < 0 ? -1 : 1) * f.n * f.m / f.d) : number;
}
*/
})();
}
}};});
|