diff options
Diffstat (limited to 'js/dojo/dojox/math/BigInteger.js')
| -rw-r--r-- | js/dojo/dojox/math/BigInteger.js | 590 |
1 files changed, 590 insertions, 0 deletions
diff --git a/js/dojo/dojox/math/BigInteger.js b/js/dojo/dojox/math/BigInteger.js new file mode 100644 index 0000000..ef40310 --- /dev/null +++ b/js/dojo/dojox/math/BigInteger.js @@ -0,0 +1,590 @@ +//>>built +// AMD-ID "dojox/math/BigInteger" +define("dojox/math/BigInteger", ["dojo", "dojox"], function(dojo, dojox) { + + dojo.getObject("math.BigInteger", true, dojox); + dojo.experimental("dojox.math.BigInteger"); + +// Contributed under CLA by Tom Wu <tjw@cs.Stanford.EDU> +// See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details. + +// Basic JavaScript BN library - subset useful for RSA encryption. +// The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java. + + // Bits per digit + var dbits; + + // JavaScript engine analysis + var canary = 0xdeadbeefcafe; + var j_lm = ((canary&0xffffff)==0xefcafe); + + // (public) Constructor + function BigInteger(a,b,c) { + if(a != null) + if("number" == typeof a) this._fromNumber(a,b,c); + else if(!b && "string" != typeof a) this._fromString(a,256); + else this._fromString(a,b); + } + + // return new, unset BigInteger + function nbi() { return new BigInteger(null); } + + // am: Compute w_j += (x*this_i), propagate carries, + // c is initial carry, returns final carry. + // c < 3*dvalue, x < 2*dvalue, this_i < dvalue + // We need to select the fastest one that works in this environment. + + // am1: use a single mult and divide to get the high bits, + // max digit bits should be 26 because + // max internal value = 2*dvalue^2-2*dvalue (< 2^53) + function am1(i,x,w,j,c,n) { + while(--n >= 0) { + var v = x*this[i++]+w[j]+c; + c = Math.floor(v/0x4000000); + w[j++] = v&0x3ffffff; + } + return c; + } + // am2 avoids a big mult-and-extract completely. + // Max digit bits should be <= 30 because we do bitwise ops + // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) + function am2(i,x,w,j,c,n) { + var xl = x&0x7fff, xh = x>>15; + while(--n >= 0) { + var l = this[i]&0x7fff; + var h = this[i++]>>15; + var m = xh*l+h*xl; + l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); + c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); + w[j++] = l&0x3fffffff; + } + return c; + } + // Alternately, set max digit bits to 28 since some + // browsers slow down when dealing with 32-bit numbers. + function am3(i,x,w,j,c,n) { + var xl = x&0x3fff, xh = x>>14; + while(--n >= 0) { + var l = this[i]&0x3fff; + var h = this[i++]>>14; + var m = xh*l+h*xl; + l = xl*l+((m&0x3fff)<<14)+w[j]+c; + c = (l>>28)+(m>>14)+xh*h; + w[j++] = l&0xfffffff; + } + return c; + } + if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { + BigInteger.prototype.am = am2; + dbits = 30; + } + else if(j_lm && (navigator.appName != "Netscape")) { + BigInteger.prototype.am = am1; + dbits = 26; + } + else { // Mozilla/Netscape seems to prefer am3 + BigInteger.prototype.am = am3; + dbits = 28; + } + + var BI_FP = 52; + + // Digit conversions + var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; + var BI_RC = []; + var rr,vv; + rr = "0".charCodeAt(0); + for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; + rr = "a".charCodeAt(0); + for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; + rr = "A".charCodeAt(0); + for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; + + function int2char(n) { return BI_RM.charAt(n); } + function intAt(s,i) { + var c = BI_RC[s.charCodeAt(i)]; + return (c==null)?-1:c; + } + + // (protected) copy this to r + function bnpCopyTo(r) { + for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; + r.t = this.t; + r.s = this.s; + } + + // (protected) set from integer value x, -DV <= x < DV + function bnpFromInt(x) { + this.t = 1; + this.s = (x<0)?-1:0; + if(x > 0) this[0] = x; + else if(x < -1) this[0] = x+_DV; + else this.t = 0; + } + + // return bigint initialized to value + function nbv(i) { var r = nbi(); r._fromInt(i); return r; } + + // (protected) set from string and radix + function bnpFromString(s,b) { + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 256) k = 8; // byte array + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else { this.fromRadix(s,b); return; } + this.t = 0; + this.s = 0; + var i = s.length, mi = false, sh = 0; + while(--i >= 0) { + var x = (k==8)?s[i]&0xff:intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-") mi = true; + continue; + } + mi = false; + if(sh == 0) + this[this.t++] = x; + else if(sh+k > this._DB) { + this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<<sh; + this[this.t++] = (x>>(this._DB-sh)); + } + else + this[this.t-1] |= x<<sh; + sh += k; + if(sh >= this._DB) sh -= this._DB; + } + if(k == 8 && (s[0]&0x80) != 0) { + this.s = -1; + if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)<<sh; + } + this._clamp(); + if(mi) BigInteger.ZERO._subTo(this,this); + } + + // (protected) clamp off excess high words + function bnpClamp() { + var c = this.s&this._DM; + while(this.t > 0 && this[this.t-1] == c) --this.t; + } + + // (public) return string representation in given radix + function bnToString(b) { + if(this.s < 0) return "-"+this.negate().toString(b); + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else return this._toRadix(b); + var km = (1<<k)-1, d, m = false, r = "", i = this.t; + var p = this._DB-(i*this._DB)%k; + if(i-- > 0) { + if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } + while(i >= 0) { + if(p < k) { + d = (this[i]&((1<<p)-1))<<(k-p); + d |= this[--i]>>(p+=this._DB-k); + } + else { + d = (this[i]>>(p-=k))&km; + if(p <= 0) { p += this._DB; --i; } + } + if(d > 0) m = true; + if(m) r += int2char(d); + } + } + return m?r:"0"; + } + + // (public) -this + function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; } + + // (public) |this| + function bnAbs() { return (this.s<0)?this.negate():this; } + + // (public) return + if this > a, - if this < a, 0 if equal + function bnCompareTo(a) { + var r = this.s-a.s; + if(r) return r; + var i = this.t; + r = i-a.t; + if(r) return r; + while(--i >= 0) if((r = this[i] - a[i])) return r; + return 0; + } + + // returns bit length of the integer x + function nbits(x) { + var r = 1, t; + if((t=x>>>16)) { x = t; r += 16; } + if((t=x>>8)) { x = t; r += 8; } + if((t=x>>4)) { x = t; r += 4; } + if((t=x>>2)) { x = t; r += 2; } + if((t=x>>1)) { x = t; r += 1; } + return r; + } + + // (public) return the number of bits in "this" + function bnBitLength() { + if(this.t <= 0) return 0; + return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM)); + } + + // (protected) r = this << n*DB + function bnpDLShiftTo(n,r) { + var i; + for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; + for(i = n-1; i >= 0; --i) r[i] = 0; + r.t = this.t+n; + r.s = this.s; + } + + // (protected) r = this >> n*DB + function bnpDRShiftTo(n,r) { + for(var i = n; i < this.t; ++i) r[i-n] = this[i]; + r.t = Math.max(this.t-n,0); + r.s = this.s; + } + + // (protected) r = this << n + function bnpLShiftTo(n,r) { + var bs = n%this._DB; + var cbs = this._DB-bs; + var bm = (1<<cbs)-1; + var ds = Math.floor(n/this._DB), c = (this.s<<bs)&this._DM, i; + for(i = this.t-1; i >= 0; --i) { + r[i+ds+1] = (this[i]>>cbs)|c; + c = (this[i]&bm)<<bs; + } + for(i = ds-1; i >= 0; --i) r[i] = 0; + r[ds] = c; + r.t = this.t+ds+1; + r.s = this.s; + r._clamp(); + } + + // (protected) r = this >> n + function bnpRShiftTo(n,r) { + r.s = this.s; + var ds = Math.floor(n/this._DB); + if(ds >= this.t) { r.t = 0; return; } + var bs = n%this._DB; + var cbs = this._DB-bs; + var bm = (1<<bs)-1; + r[0] = this[ds]>>bs; + for(var i = ds+1; i < this.t; ++i) { + r[i-ds-1] |= (this[i]&bm)<<cbs; + r[i-ds] = this[i]>>bs; + } + if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; + r.t = this.t-ds; + r._clamp(); + } + + // (protected) r = this - a + function bnpSubTo(a,r) { + var i = 0, c = 0, m = Math.min(a.t,this.t); + while(i < m) { + c += this[i]-a[i]; + r[i++] = c&this._DM; + c >>= this._DB; + } + if(a.t < this.t) { + c -= a.s; + while(i < this.t) { + c += this[i]; + r[i++] = c&this._DM; + c >>= this._DB; + } + c += this.s; + } + else { + c += this.s; + while(i < a.t) { + c -= a[i]; + r[i++] = c&this._DM; + c >>= this._DB; + } + c -= a.s; + } + r.s = (c<0)?-1:0; + if(c < -1) r[i++] = this._DV+c; + else if(c > 0) r[i++] = c; + r.t = i; + r._clamp(); + } + + // (protected) r = this * a, r != this,a (HAC 14.12) + // "this" should be the larger one if appropriate. + function bnpMultiplyTo(a,r) { + var x = this.abs(), y = a.abs(); + var i = x.t; + r.t = i+y.t; + while(--i >= 0) r[i] = 0; + for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); + r.s = 0; + r._clamp(); + if(this.s != a.s) BigInteger.ZERO._subTo(r,r); + } + + // (protected) r = this^2, r != this (HAC 14.16) + function bnpSquareTo(r) { + var x = this.abs(); + var i = r.t = 2*x.t; + while(--i >= 0) r[i] = 0; + for(i = 0; i < x.t-1; ++i) { + var c = x.am(i,x[i],r,2*i,0,1); + if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) { + r[i+x.t] -= x._DV; + r[i+x.t+1] = 1; + } + } + if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); + r.s = 0; + r._clamp(); + } + + // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) + // r != q, this != m. q or r may be null. + function bnpDivRemTo(m,q,r) { + var pm = m.abs(); + if(pm.t <= 0) return; + var pt = this.abs(); + if(pt.t < pm.t) { + if(q != null) q._fromInt(0); + if(r != null) this._copyTo(r); + return; + } + if(r == null) r = nbi(); + var y = nbi(), ts = this.s, ms = m.s; + var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus + if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); } + else { pm._copyTo(y); pt._copyTo(r); } + var ys = y.t; + var y0 = y[ys-1]; + if(y0 == 0) return; + var yt = y0*(1<<this._F1)+((ys>1)?y[ys-2]>>this._F2:0); + var d1 = this._FV/yt, d2 = (1<<this._F1)/yt, e = 1<<this._F2; + var i = r.t, j = i-ys, t = (q==null)?nbi():q; + y._dlShiftTo(j,t); + if(r.compareTo(t) >= 0) { + r[r.t++] = 1; + r._subTo(t,r); + } + BigInteger.ONE._dlShiftTo(ys,t); + t._subTo(y,y); // "negative" y so we can replace sub with am later + while(y.t < ys) y[y.t++] = 0; + while(--j >= 0) { + // Estimate quotient digit + var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); + if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out + y._dlShiftTo(j,t); + r._subTo(t,r); + while(r[i] < --qd) r._subTo(t,r); + } + } + if(q != null) { + r._drShiftTo(ys,q); + if(ts != ms) BigInteger.ZERO._subTo(q,q); + } + r.t = ys; + r._clamp(); + if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder + if(ts < 0) BigInteger.ZERO._subTo(r,r); + } + + // (public) this mod a + function bnMod(a) { + var r = nbi(); + this.abs()._divRemTo(a,null,r); + if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r); + return r; + } + + // Modular reduction using "classic" algorithm + function Classic(m) { this.m = m; } + function cConvert(x) { + if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); + else return x; + } + function cRevert(x) { return x; } + function cReduce(x) { x._divRemTo(this.m,null,x); } + function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } + function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); } + + dojo.extend(Classic, { + convert: cConvert, + revert: cRevert, + reduce: cReduce, + mulTo: cMulTo, + sqrTo: cSqrTo + }); + + // (protected) return "-1/this % 2^DB"; useful for Mont. reduction + // justification: + // xy == 1 (mod m) + // xy = 1+km + // xy(2-xy) = (1+km)(1-km) + // x[y(2-xy)] = 1-k^2m^2 + // x[y(2-xy)] == 1 (mod m^2) + // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 + // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. + // JS multiply "overflows" differently from C/C++, so care is needed here. + function bnpInvDigit() { + if(this.t < 1) return 0; + var x = this[0]; + if((x&1) == 0) return 0; + var y = x&3; // y == 1/x mod 2^2 + y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 + y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 + y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 + // last step - calculate inverse mod DV directly; + // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints + y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits + // we really want the negative inverse, and -DV < y < DV + return (y>0)?this._DV-y:-y; + } + + // Montgomery reduction + function Montgomery(m) { + this.m = m; + this.mp = m._invDigit(); + this.mpl = this.mp&0x7fff; + this.mph = this.mp>>15; + this.um = (1<<(m._DB-15))-1; + this.mt2 = 2*m.t; + } + + // xR mod m + function montConvert(x) { + var r = nbi(); + x.abs()._dlShiftTo(this.m.t,r); + r._divRemTo(this.m,null,r); + if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r); + return r; + } + + // x/R mod m + function montRevert(x) { + var r = nbi(); + x._copyTo(r); + this.reduce(r); + return r; + } + + // x = x/R mod m (HAC 14.32) + function montReduce(x) { + while(x.t <= this.mt2) // pad x so am has enough room later + x[x.t++] = 0; + for(var i = 0; i < this.m.t; ++i) { + // faster way of calculating u0 = x[i]*mp mod DV + var j = x[i]&0x7fff; + var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM; + // use am to combine the multiply-shift-add into one call + j = i+this.m.t; + x[j] += this.m.am(0,u0,x,i,0,this.m.t); + // propagate carry + while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; } + } + x._clamp(); + x._drShiftTo(this.m.t,x); + if(x.compareTo(this.m) >= 0) x._subTo(this.m,x); + } + + // r = "x^2/R mod m"; x != r + function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); } + + // r = "xy/R mod m"; x,y != r + function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } + + dojo.extend(Montgomery, { + convert: montConvert, + revert: montRevert, + reduce: montReduce, + mulTo: montMulTo, + sqrTo: montSqrTo + }); + + // (protected) true iff this is even + function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } + + // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) + function bnpExp(e,z) { + if(e > 0xffffffff || e < 1) return BigInteger.ONE; + var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; + g._copyTo(r); + while(--i >= 0) { + z.sqrTo(r,r2); + if((e&(1<<i)) > 0) z.mulTo(r2,g,r); + else { var t = r; r = r2; r2 = t; } + } + return z.revert(r); + } + + // (public) this^e % m, 0 <= e < 2^32 + function bnModPowInt(e,m) { + var z; + if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m); + return this._exp(e,z); + } + + dojo.extend(BigInteger, { + // protected, not part of the official API + _DB: dbits, + _DM: (1 << dbits) - 1, + _DV: 1 << dbits, + + _FV: Math.pow(2, BI_FP), + _F1: BI_FP - dbits, + _F2: 2 * dbits-BI_FP, + + // protected + _copyTo: bnpCopyTo, + _fromInt: bnpFromInt, + _fromString: bnpFromString, + _clamp: bnpClamp, + _dlShiftTo: bnpDLShiftTo, + _drShiftTo: bnpDRShiftTo, + _lShiftTo: bnpLShiftTo, + _rShiftTo: bnpRShiftTo, + _subTo: bnpSubTo, + _multiplyTo: bnpMultiplyTo, + _squareTo: bnpSquareTo, + _divRemTo: bnpDivRemTo, + _invDigit: bnpInvDigit, + _isEven: bnpIsEven, + _exp: bnpExp, + + // public + toString: bnToString, + negate: bnNegate, + abs: bnAbs, + compareTo: bnCompareTo, + bitLength: bnBitLength, + mod: bnMod, + modPowInt: bnModPowInt + }); + + dojo._mixin(BigInteger, { + // "constants" + ZERO: nbv(0), + ONE: nbv(1), + + // internal functions + _nbi: nbi, + _nbv: nbv, + _nbits: nbits, + + // internal classes + _Montgomery: Montgomery + }); + + // export to DojoX + dojox.math.BigInteger = BigInteger; + + return dojox.math.BigInteger; +}); |
