summaryrefslogtreecommitdiff
path: root/js/dojo/dojox/math/BigInteger.js
diff options
context:
space:
mode:
Diffstat (limited to 'js/dojo/dojox/math/BigInteger.js')
-rw-r--r--js/dojo/dojox/math/BigInteger.js590
1 files changed, 590 insertions, 0 deletions
diff --git a/js/dojo/dojox/math/BigInteger.js b/js/dojo/dojox/math/BigInteger.js
new file mode 100644
index 0000000..ef40310
--- /dev/null
+++ b/js/dojo/dojox/math/BigInteger.js
@@ -0,0 +1,590 @@
+//>>built
+// AMD-ID "dojox/math/BigInteger"
+define("dojox/math/BigInteger", ["dojo", "dojox"], function(dojo, dojox) {
+
+ dojo.getObject("math.BigInteger", true, dojox);
+ dojo.experimental("dojox.math.BigInteger");
+
+// Contributed under CLA by Tom Wu <tjw@cs.Stanford.EDU>
+// See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details.
+
+// Basic JavaScript BN library - subset useful for RSA encryption.
+// The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java.
+
+ // Bits per digit
+ var dbits;
+
+ // JavaScript engine analysis
+ var canary = 0xdeadbeefcafe;
+ var j_lm = ((canary&0xffffff)==0xefcafe);
+
+ // (public) Constructor
+ function BigInteger(a,b,c) {
+ if(a != null)
+ if("number" == typeof a) this._fromNumber(a,b,c);
+ else if(!b && "string" != typeof a) this._fromString(a,256);
+ else this._fromString(a,b);
+ }
+
+ // return new, unset BigInteger
+ function nbi() { return new BigInteger(null); }
+
+ // am: Compute w_j += (x*this_i), propagate carries,
+ // c is initial carry, returns final carry.
+ // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
+ // We need to select the fastest one that works in this environment.
+
+ // am1: use a single mult and divide to get the high bits,
+ // max digit bits should be 26 because
+ // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
+ function am1(i,x,w,j,c,n) {
+ while(--n >= 0) {
+ var v = x*this[i++]+w[j]+c;
+ c = Math.floor(v/0x4000000);
+ w[j++] = v&0x3ffffff;
+ }
+ return c;
+ }
+ // am2 avoids a big mult-and-extract completely.
+ // Max digit bits should be <= 30 because we do bitwise ops
+ // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
+ function am2(i,x,w,j,c,n) {
+ var xl = x&0x7fff, xh = x>>15;
+ while(--n >= 0) {
+ var l = this[i]&0x7fff;
+ var h = this[i++]>>15;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
+ c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
+ w[j++] = l&0x3fffffff;
+ }
+ return c;
+ }
+ // Alternately, set max digit bits to 28 since some
+ // browsers slow down when dealing with 32-bit numbers.
+ function am3(i,x,w,j,c,n) {
+ var xl = x&0x3fff, xh = x>>14;
+ while(--n >= 0) {
+ var l = this[i]&0x3fff;
+ var h = this[i++]>>14;
+ var m = xh*l+h*xl;
+ l = xl*l+((m&0x3fff)<<14)+w[j]+c;
+ c = (l>>28)+(m>>14)+xh*h;
+ w[j++] = l&0xfffffff;
+ }
+ return c;
+ }
+ if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
+ BigInteger.prototype.am = am2;
+ dbits = 30;
+ }
+ else if(j_lm && (navigator.appName != "Netscape")) {
+ BigInteger.prototype.am = am1;
+ dbits = 26;
+ }
+ else { // Mozilla/Netscape seems to prefer am3
+ BigInteger.prototype.am = am3;
+ dbits = 28;
+ }
+
+ var BI_FP = 52;
+
+ // Digit conversions
+ var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
+ var BI_RC = [];
+ var rr,vv;
+ rr = "0".charCodeAt(0);
+ for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
+ rr = "a".charCodeAt(0);
+ for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+ rr = "A".charCodeAt(0);
+ for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
+
+ function int2char(n) { return BI_RM.charAt(n); }
+ function intAt(s,i) {
+ var c = BI_RC[s.charCodeAt(i)];
+ return (c==null)?-1:c;
+ }
+
+ // (protected) copy this to r
+ function bnpCopyTo(r) {
+ for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
+ r.t = this.t;
+ r.s = this.s;
+ }
+
+ // (protected) set from integer value x, -DV <= x < DV
+ function bnpFromInt(x) {
+ this.t = 1;
+ this.s = (x<0)?-1:0;
+ if(x > 0) this[0] = x;
+ else if(x < -1) this[0] = x+_DV;
+ else this.t = 0;
+ }
+
+ // return bigint initialized to value
+ function nbv(i) { var r = nbi(); r._fromInt(i); return r; }
+
+ // (protected) set from string and radix
+ function bnpFromString(s,b) {
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 256) k = 8; // byte array
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else { this.fromRadix(s,b); return; }
+ this.t = 0;
+ this.s = 0;
+ var i = s.length, mi = false, sh = 0;
+ while(--i >= 0) {
+ var x = (k==8)?s[i]&0xff:intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-") mi = true;
+ continue;
+ }
+ mi = false;
+ if(sh == 0)
+ this[this.t++] = x;
+ else if(sh+k > this._DB) {
+ this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<<sh;
+ this[this.t++] = (x>>(this._DB-sh));
+ }
+ else
+ this[this.t-1] |= x<<sh;
+ sh += k;
+ if(sh >= this._DB) sh -= this._DB;
+ }
+ if(k == 8 && (s[0]&0x80) != 0) {
+ this.s = -1;
+ if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)<<sh;
+ }
+ this._clamp();
+ if(mi) BigInteger.ZERO._subTo(this,this);
+ }
+
+ // (protected) clamp off excess high words
+ function bnpClamp() {
+ var c = this.s&this._DM;
+ while(this.t > 0 && this[this.t-1] == c) --this.t;
+ }
+
+ // (public) return string representation in given radix
+ function bnToString(b) {
+ if(this.s < 0) return "-"+this.negate().toString(b);
+ var k;
+ if(b == 16) k = 4;
+ else if(b == 8) k = 3;
+ else if(b == 2) k = 1;
+ else if(b == 32) k = 5;
+ else if(b == 4) k = 2;
+ else return this._toRadix(b);
+ var km = (1<<k)-1, d, m = false, r = "", i = this.t;
+ var p = this._DB-(i*this._DB)%k;
+ if(i-- > 0) {
+ if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
+ while(i >= 0) {
+ if(p < k) {
+ d = (this[i]&((1<<p)-1))<<(k-p);
+ d |= this[--i]>>(p+=this._DB-k);
+ }
+ else {
+ d = (this[i]>>(p-=k))&km;
+ if(p <= 0) { p += this._DB; --i; }
+ }
+ if(d > 0) m = true;
+ if(m) r += int2char(d);
+ }
+ }
+ return m?r:"0";
+ }
+
+ // (public) -this
+ function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; }
+
+ // (public) |this|
+ function bnAbs() { return (this.s<0)?this.negate():this; }
+
+ // (public) return + if this > a, - if this < a, 0 if equal
+ function bnCompareTo(a) {
+ var r = this.s-a.s;
+ if(r) return r;
+ var i = this.t;
+ r = i-a.t;
+ if(r) return r;
+ while(--i >= 0) if((r = this[i] - a[i])) return r;
+ return 0;
+ }
+
+ // returns bit length of the integer x
+ function nbits(x) {
+ var r = 1, t;
+ if((t=x>>>16)) { x = t; r += 16; }
+ if((t=x>>8)) { x = t; r += 8; }
+ if((t=x>>4)) { x = t; r += 4; }
+ if((t=x>>2)) { x = t; r += 2; }
+ if((t=x>>1)) { x = t; r += 1; }
+ return r;
+ }
+
+ // (public) return the number of bits in "this"
+ function bnBitLength() {
+ if(this.t <= 0) return 0;
+ return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM));
+ }
+
+ // (protected) r = this << n*DB
+ function bnpDLShiftTo(n,r) {
+ var i;
+ for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
+ for(i = n-1; i >= 0; --i) r[i] = 0;
+ r.t = this.t+n;
+ r.s = this.s;
+ }
+
+ // (protected) r = this >> n*DB
+ function bnpDRShiftTo(n,r) {
+ for(var i = n; i < this.t; ++i) r[i-n] = this[i];
+ r.t = Math.max(this.t-n,0);
+ r.s = this.s;
+ }
+
+ // (protected) r = this << n
+ function bnpLShiftTo(n,r) {
+ var bs = n%this._DB;
+ var cbs = this._DB-bs;
+ var bm = (1<<cbs)-1;
+ var ds = Math.floor(n/this._DB), c = (this.s<<bs)&this._DM, i;
+ for(i = this.t-1; i >= 0; --i) {
+ r[i+ds+1] = (this[i]>>cbs)|c;
+ c = (this[i]&bm)<<bs;
+ }
+ for(i = ds-1; i >= 0; --i) r[i] = 0;
+ r[ds] = c;
+ r.t = this.t+ds+1;
+ r.s = this.s;
+ r._clamp();
+ }
+
+ // (protected) r = this >> n
+ function bnpRShiftTo(n,r) {
+ r.s = this.s;
+ var ds = Math.floor(n/this._DB);
+ if(ds >= this.t) { r.t = 0; return; }
+ var bs = n%this._DB;
+ var cbs = this._DB-bs;
+ var bm = (1<<bs)-1;
+ r[0] = this[ds]>>bs;
+ for(var i = ds+1; i < this.t; ++i) {
+ r[i-ds-1] |= (this[i]&bm)<<cbs;
+ r[i-ds] = this[i]>>bs;
+ }
+ if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
+ r.t = this.t-ds;
+ r._clamp();
+ }
+
+ // (protected) r = this - a
+ function bnpSubTo(a,r) {
+ var i = 0, c = 0, m = Math.min(a.t,this.t);
+ while(i < m) {
+ c += this[i]-a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ if(a.t < this.t) {
+ c -= a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c -= a[i];
+ r[i++] = c&this._DM;
+ c >>= this._DB;
+ }
+ c -= a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c < -1) r[i++] = this._DV+c;
+ else if(c > 0) r[i++] = c;
+ r.t = i;
+ r._clamp();
+ }
+
+ // (protected) r = this * a, r != this,a (HAC 14.12)
+ // "this" should be the larger one if appropriate.
+ function bnpMultiplyTo(a,r) {
+ var x = this.abs(), y = a.abs();
+ var i = x.t;
+ r.t = i+y.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
+ r.s = 0;
+ r._clamp();
+ if(this.s != a.s) BigInteger.ZERO._subTo(r,r);
+ }
+
+ // (protected) r = this^2, r != this (HAC 14.16)
+ function bnpSquareTo(r) {
+ var x = this.abs();
+ var i = r.t = 2*x.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < x.t-1; ++i) {
+ var c = x.am(i,x[i],r,2*i,0,1);
+ if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) {
+ r[i+x.t] -= x._DV;
+ r[i+x.t+1] = 1;
+ }
+ }
+ if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
+ r.s = 0;
+ r._clamp();
+ }
+
+ // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
+ // r != q, this != m. q or r may be null.
+ function bnpDivRemTo(m,q,r) {
+ var pm = m.abs();
+ if(pm.t <= 0) return;
+ var pt = this.abs();
+ if(pt.t < pm.t) {
+ if(q != null) q._fromInt(0);
+ if(r != null) this._copyTo(r);
+ return;
+ }
+ if(r == null) r = nbi();
+ var y = nbi(), ts = this.s, ms = m.s;
+ var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus
+ if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); }
+ else { pm._copyTo(y); pt._copyTo(r); }
+ var ys = y.t;
+ var y0 = y[ys-1];
+ if(y0 == 0) return;
+ var yt = y0*(1<<this._F1)+((ys>1)?y[ys-2]>>this._F2:0);
+ var d1 = this._FV/yt, d2 = (1<<this._F1)/yt, e = 1<<this._F2;
+ var i = r.t, j = i-ys, t = (q==null)?nbi():q;
+ y._dlShiftTo(j,t);
+ if(r.compareTo(t) >= 0) {
+ r[r.t++] = 1;
+ r._subTo(t,r);
+ }
+ BigInteger.ONE._dlShiftTo(ys,t);
+ t._subTo(y,y); // "negative" y so we can replace sub with am later
+ while(y.t < ys) y[y.t++] = 0;
+ while(--j >= 0) {
+ // Estimate quotient digit
+ var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
+ if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
+ y._dlShiftTo(j,t);
+ r._subTo(t,r);
+ while(r[i] < --qd) r._subTo(t,r);
+ }
+ }
+ if(q != null) {
+ r._drShiftTo(ys,q);
+ if(ts != ms) BigInteger.ZERO._subTo(q,q);
+ }
+ r.t = ys;
+ r._clamp();
+ if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder
+ if(ts < 0) BigInteger.ZERO._subTo(r,r);
+ }
+
+ // (public) this mod a
+ function bnMod(a) {
+ var r = nbi();
+ this.abs()._divRemTo(a,null,r);
+ if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r);
+ return r;
+ }
+
+ // Modular reduction using "classic" algorithm
+ function Classic(m) { this.m = m; }
+ function cConvert(x) {
+ if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
+ else return x;
+ }
+ function cRevert(x) { return x; }
+ function cReduce(x) { x._divRemTo(this.m,null,x); }
+ function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
+ function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
+
+ dojo.extend(Classic, {
+ convert: cConvert,
+ revert: cRevert,
+ reduce: cReduce,
+ mulTo: cMulTo,
+ sqrTo: cSqrTo
+ });
+
+ // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
+ // justification:
+ // xy == 1 (mod m)
+ // xy = 1+km
+ // xy(2-xy) = (1+km)(1-km)
+ // x[y(2-xy)] = 1-k^2m^2
+ // x[y(2-xy)] == 1 (mod m^2)
+ // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
+ // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
+ // JS multiply "overflows" differently from C/C++, so care is needed here.
+ function bnpInvDigit() {
+ if(this.t < 1) return 0;
+ var x = this[0];
+ if((x&1) == 0) return 0;
+ var y = x&3; // y == 1/x mod 2^2
+ y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
+ y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
+ y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
+ // last step - calculate inverse mod DV directly;
+ // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
+ y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits
+ // we really want the negative inverse, and -DV < y < DV
+ return (y>0)?this._DV-y:-y;
+ }
+
+ // Montgomery reduction
+ function Montgomery(m) {
+ this.m = m;
+ this.mp = m._invDigit();
+ this.mpl = this.mp&0x7fff;
+ this.mph = this.mp>>15;
+ this.um = (1<<(m._DB-15))-1;
+ this.mt2 = 2*m.t;
+ }
+
+ // xR mod m
+ function montConvert(x) {
+ var r = nbi();
+ x.abs()._dlShiftTo(this.m.t,r);
+ r._divRemTo(this.m,null,r);
+ if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r);
+ return r;
+ }
+
+ // x/R mod m
+ function montRevert(x) {
+ var r = nbi();
+ x._copyTo(r);
+ this.reduce(r);
+ return r;
+ }
+
+ // x = x/R mod m (HAC 14.32)
+ function montReduce(x) {
+ while(x.t <= this.mt2) // pad x so am has enough room later
+ x[x.t++] = 0;
+ for(var i = 0; i < this.m.t; ++i) {
+ // faster way of calculating u0 = x[i]*mp mod DV
+ var j = x[i]&0x7fff;
+ var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM;
+ // use am to combine the multiply-shift-add into one call
+ j = i+this.m.t;
+ x[j] += this.m.am(0,u0,x,i,0,this.m.t);
+ // propagate carry
+ while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; }
+ }
+ x._clamp();
+ x._drShiftTo(this.m.t,x);
+ if(x.compareTo(this.m) >= 0) x._subTo(this.m,x);
+ }
+
+ // r = "x^2/R mod m"; x != r
+ function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
+
+ // r = "xy/R mod m"; x,y != r
+ function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
+
+ dojo.extend(Montgomery, {
+ convert: montConvert,
+ revert: montRevert,
+ reduce: montReduce,
+ mulTo: montMulTo,
+ sqrTo: montSqrTo
+ });
+
+ // (protected) true iff this is even
+ function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
+
+ // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
+ function bnpExp(e,z) {
+ if(e > 0xffffffff || e < 1) return BigInteger.ONE;
+ var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
+ g._copyTo(r);
+ while(--i >= 0) {
+ z.sqrTo(r,r2);
+ if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
+ else { var t = r; r = r2; r2 = t; }
+ }
+ return z.revert(r);
+ }
+
+ // (public) this^e % m, 0 <= e < 2^32
+ function bnModPowInt(e,m) {
+ var z;
+ if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m);
+ return this._exp(e,z);
+ }
+
+ dojo.extend(BigInteger, {
+ // protected, not part of the official API
+ _DB: dbits,
+ _DM: (1 << dbits) - 1,
+ _DV: 1 << dbits,
+
+ _FV: Math.pow(2, BI_FP),
+ _F1: BI_FP - dbits,
+ _F2: 2 * dbits-BI_FP,
+
+ // protected
+ _copyTo: bnpCopyTo,
+ _fromInt: bnpFromInt,
+ _fromString: bnpFromString,
+ _clamp: bnpClamp,
+ _dlShiftTo: bnpDLShiftTo,
+ _drShiftTo: bnpDRShiftTo,
+ _lShiftTo: bnpLShiftTo,
+ _rShiftTo: bnpRShiftTo,
+ _subTo: bnpSubTo,
+ _multiplyTo: bnpMultiplyTo,
+ _squareTo: bnpSquareTo,
+ _divRemTo: bnpDivRemTo,
+ _invDigit: bnpInvDigit,
+ _isEven: bnpIsEven,
+ _exp: bnpExp,
+
+ // public
+ toString: bnToString,
+ negate: bnNegate,
+ abs: bnAbs,
+ compareTo: bnCompareTo,
+ bitLength: bnBitLength,
+ mod: bnMod,
+ modPowInt: bnModPowInt
+ });
+
+ dojo._mixin(BigInteger, {
+ // "constants"
+ ZERO: nbv(0),
+ ONE: nbv(1),
+
+ // internal functions
+ _nbi: nbi,
+ _nbv: nbv,
+ _nbits: nbits,
+
+ // internal classes
+ _Montgomery: Montgomery
+ });
+
+ // export to DojoX
+ dojox.math.BigInteger = BigInteger;
+
+ return dojox.math.BigInteger;
+});