diff options
Diffstat (limited to 'js/dojo/dojox/math/BigInteger-ext.js')
| -rw-r--r-- | js/dojo/dojox/math/BigInteger-ext.js | 657 |
1 files changed, 657 insertions, 0 deletions
diff --git a/js/dojo/dojox/math/BigInteger-ext.js b/js/dojo/dojox/math/BigInteger-ext.js new file mode 100644 index 0000000..ce336fc --- /dev/null +++ b/js/dojo/dojox/math/BigInteger-ext.js @@ -0,0 +1,657 @@ +//>>built +// AMD-ID "dojox/math/BigInteger-ext" +define("dojox/math/BigInteger-ext", ["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { + dojo.experimental("dojox.math.BigInteger-ext"); + +// Contributed under CLA by Tom Wu + +// Extended JavaScript BN functions, required for RSA private ops. + var BigInteger = dojox.math.BigInteger, + nbi = BigInteger._nbi, nbv = BigInteger._nbv, + nbits = BigInteger._nbits, + Montgomery = BigInteger._Montgomery; + + // (public) + function bnClone() { var r = nbi(); this._copyTo(r); return r; } + + // (public) return value as integer + function bnIntValue() { + if(this.s < 0) { + if(this.t == 1) return this[0]-this._DV; + else if(this.t == 0) return -1; + } + else if(this.t == 1) return this[0]; + else if(this.t == 0) return 0; + // assumes 16 < DB < 32 + return ((this[1]&((1<<(32-this._DB))-1))<<this._DB)|this[0]; + } + + // (public) return value as byte + function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; } + + // (public) return value as short (assumes DB>=16) + function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } + + // (protected) return x s.t. r^x < DV + function bnpChunkSize(r) { return Math.floor(Math.LN2*this._DB/Math.log(r)); } + + // (public) 0 if this == 0, 1 if this > 0 + function bnSigNum() { + if(this.s < 0) return -1; + else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; + else return 1; + } + + // (protected) convert to radix string + function bnpToRadix(b) { + if(b == null) b = 10; + if(this.signum() == 0 || b < 2 || b > 36) return "0"; + var cs = this._chunkSize(b); + var a = Math.pow(b,cs); + var d = nbv(a), y = nbi(), z = nbi(), r = ""; + this._divRemTo(d,y,z); + while(y.signum() > 0) { + r = (a+z.intValue()).toString(b).substr(1) + r; + y._divRemTo(d,y,z); + } + return z.intValue().toString(b) + r; + } + + // (protected) convert from radix string + function bnpFromRadix(s,b) { + this._fromInt(0); + if(b == null) b = 10; + var cs = this._chunkSize(b); + var d = Math.pow(b,cs), mi = false, j = 0, w = 0; + for(var i = 0; i < s.length; ++i) { + var x = intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-" && this.signum() == 0) mi = true; + continue; + } + w = b*w+x; + if(++j >= cs) { + this._dMultiply(d); + this._dAddOffset(w,0); + j = 0; + w = 0; + } + } + if(j > 0) { + this._dMultiply(Math.pow(b,j)); + this._dAddOffset(w,0); + } + if(mi) BigInteger.ZERO._subTo(this,this); + } + + // (protected) alternate constructor + function bnpFromNumber(a,b,c) { + if("number" == typeof b) { + // new BigInteger(int,int,RNG) + if(a < 2) this._fromInt(1); + else { + this._fromNumber(a,c); + if(!this.testBit(a-1)) // force MSB set + this._bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); + if(this._isEven()) this._dAddOffset(1,0); // force odd + while(!this.isProbablePrime(b)) { + this._dAddOffset(2,0); + if(this.bitLength() > a) this._subTo(BigInteger.ONE.shiftLeft(a-1),this); + } + } + } + else { + // new BigInteger(int,RNG) + var x = [], t = a&7; + x.length = (a>>3)+1; + b.nextBytes(x); + if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; + this._fromString(x,256); + } + } + + // (public) convert to bigendian byte array + function bnToByteArray() { + var i = this.t, r = []; + r[0] = this.s; + var p = this._DB-(i*this._DB)%8, d, k = 0; + if(i-- > 0) { + if(p < this._DB && (d = this[i]>>p) != (this.s&this._DM)>>p) + r[k++] = d|(this.s<<(this._DB-p)); + while(i >= 0) { + if(p < 8) { + d = (this[i]&((1<<p)-1))<<(8-p); + d |= this[--i]>>(p+=this._DB-8); + } + else { + d = (this[i]>>(p-=8))&0xff; + if(p <= 0) { p += this._DB; --i; } + } + if((d&0x80) != 0) d |= -256; + if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; + if(k > 0 || d != this.s) r[k++] = d; + } + } + return r; + } + + function bnEquals(a) { return(this.compareTo(a)==0); } + function bnMin(a) { return(this.compareTo(a)<0)?this:a; } + function bnMax(a) { return(this.compareTo(a)>0)?this:a; } + + // (protected) r = this op a (bitwise) + function bnpBitwiseTo(a,op,r) { + var i, f, m = Math.min(a.t,this.t); + for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); + if(a.t < this.t) { + f = a.s&this._DM; + for(i = m; i < this.t; ++i) r[i] = op(this[i],f); + r.t = this.t; + } + else { + f = this.s&this._DM; + for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); + r.t = a.t; + } + r.s = op(this.s,a.s); + r._clamp(); + } + + // (public) this & a + function op_and(x,y) { return x&y; } + function bnAnd(a) { var r = nbi(); this._bitwiseTo(a,op_and,r); return r; } + + // (public) this | a + function op_or(x,y) { return x|y; } + function bnOr(a) { var r = nbi(); this._bitwiseTo(a,op_or,r); return r; } + + // (public) this ^ a + function op_xor(x,y) { return x^y; } + function bnXor(a) { var r = nbi(); this._bitwiseTo(a,op_xor,r); return r; } + + // (public) this & ~a + function op_andnot(x,y) { return x&~y; } + function bnAndNot(a) { var r = nbi(); this._bitwiseTo(a,op_andnot,r); return r; } + + // (public) ~this + function bnNot() { + var r = nbi(); + for(var i = 0; i < this.t; ++i) r[i] = this._DM&~this[i]; + r.t = this.t; + r.s = ~this.s; + return r; + } + + // (public) this << n + function bnShiftLeft(n) { + var r = nbi(); + if(n < 0) this._rShiftTo(-n,r); else this._lShiftTo(n,r); + return r; + } + + // (public) this >> n + function bnShiftRight(n) { + var r = nbi(); + if(n < 0) this._lShiftTo(-n,r); else this._rShiftTo(n,r); + return r; + } + + // return index of lowest 1-bit in x, x < 2^31 + function lbit(x) { + if(x == 0) return -1; + var r = 0; + if((x&0xffff) == 0) { x >>= 16; r += 16; } + if((x&0xff) == 0) { x >>= 8; r += 8; } + if((x&0xf) == 0) { x >>= 4; r += 4; } + if((x&3) == 0) { x >>= 2; r += 2; } + if((x&1) == 0) ++r; + return r; + } + + // (public) returns index of lowest 1-bit (or -1 if none) + function bnGetLowestSetBit() { + for(var i = 0; i < this.t; ++i) + if(this[i] != 0) return i*this._DB+lbit(this[i]); + if(this.s < 0) return this.t*this._DB; + return -1; + } + + // return number of 1 bits in x + function cbit(x) { + var r = 0; + while(x != 0) { x &= x-1; ++r; } + return r; + } + + // (public) return number of set bits + function bnBitCount() { + var r = 0, x = this.s&this._DM; + for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); + return r; + } + + // (public) true iff nth bit is set + function bnTestBit(n) { + var j = Math.floor(n/this._DB); + if(j >= this.t) return(this.s!=0); + return((this[j]&(1<<(n%this._DB)))!=0); + } + + // (protected) this op (1<<n) + function bnpChangeBit(n,op) { + var r = BigInteger.ONE.shiftLeft(n); + this._bitwiseTo(r,op,r); + return r; + } + + // (public) this | (1<<n) + function bnSetBit(n) { return this._changeBit(n,op_or); } + + // (public) this & ~(1<<n) + function bnClearBit(n) { return this._changeBit(n,op_andnot); } + + // (public) this ^ (1<<n) + function bnFlipBit(n) { return this._changeBit(n,op_xor); } + + // (protected) r = this + a + function bnpAddTo(a,r) { + var i = 0, c = 0, m = Math.min(a.t,this.t); + while(i < m) { + c += this[i]+a[i]; + r[i++] = c&this._DM; + c >>= this._DB; + } + if(a.t < this.t) { + c += a.s; + while(i < this.t) { + c += this[i]; + r[i++] = c&this._DM; + c >>= this._DB; + } + c += this.s; + } + else { + c += this.s; + while(i < a.t) { + c += a[i]; + r[i++] = c&this._DM; + c >>= this._DB; + } + c += a.s; + } + r.s = (c<0)?-1:0; + if(c > 0) r[i++] = c; + else if(c < -1) r[i++] = this._DV+c; + r.t = i; + r._clamp(); + } + + // (public) this + a + function bnAdd(a) { var r = nbi(); this._addTo(a,r); return r; } + + // (public) this - a + function bnSubtract(a) { var r = nbi(); this._subTo(a,r); return r; } + + // (public) this * a + function bnMultiply(a) { var r = nbi(); this._multiplyTo(a,r); return r; } + + // (public) this / a + function bnDivide(a) { var r = nbi(); this._divRemTo(a,r,null); return r; } + + // (public) this % a + function bnRemainder(a) { var r = nbi(); this._divRemTo(a,null,r); return r; } + + // (public) [this/a,this%a] + function bnDivideAndRemainder(a) { + var q = nbi(), r = nbi(); + this._divRemTo(a,q,r); + return [q, r]; + } + + // (protected) this *= n, this >= 0, 1 < n < DV + function bnpDMultiply(n) { + this[this.t] = this.am(0,n-1,this,0,0,this.t); + ++this.t; + this._clamp(); + } + + // (protected) this += n << w words, this >= 0 + function bnpDAddOffset(n,w) { + while(this.t <= w) this[this.t++] = 0; + this[w] += n; + while(this[w] >= this._DV) { + this[w] -= this._DV; + if(++w >= this.t) this[this.t++] = 0; + ++this[w]; + } + } + + // A "null" reducer + function NullExp() {} + function nNop(x) { return x; } + function nMulTo(x,y,r) { x._multiplyTo(y,r); } + function nSqrTo(x,r) { x._squareTo(r); } + + NullExp.prototype.convert = nNop; + NullExp.prototype.revert = nNop; + NullExp.prototype.mulTo = nMulTo; + NullExp.prototype.sqrTo = nSqrTo; + + // (public) this^e + function bnPow(e) { return this._exp(e,new NullExp()); } + + // (protected) r = lower n words of "this * a", a.t <= n + // "this" should be the larger one if appropriate. + function bnpMultiplyLowerTo(a,n,r) { + var i = Math.min(this.t+a.t,n); + r.s = 0; // assumes a,this >= 0 + r.t = i; + while(i > 0) r[--i] = 0; + var j; + for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); + for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); + r._clamp(); + } + + // (protected) r = "this * a" without lower n words, n > 0 + // "this" should be the larger one if appropriate. + function bnpMultiplyUpperTo(a,n,r) { + --n; + var i = r.t = this.t+a.t-n; + r.s = 0; // assumes a,this >= 0 + while(--i >= 0) r[i] = 0; + for(i = Math.max(n-this.t,0); i < a.t; ++i) + r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); + r._clamp(); + r._drShiftTo(1,r); + } + + // Barrett modular reduction + function Barrett(m) { + // setup Barrett + this.r2 = nbi(); + this.q3 = nbi(); + BigInteger.ONE._dlShiftTo(2*m.t,this.r2); + this.mu = this.r2.divide(m); + this.m = m; + } + + function barrettConvert(x) { + if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); + else if(x.compareTo(this.m) < 0) return x; + else { var r = nbi(); x._copyTo(r); this.reduce(r); return r; } + } + + function barrettRevert(x) { return x; } + + // x = x mod m (HAC 14.42) + function barrettReduce(x) { + x._drShiftTo(this.m.t-1,this.r2); + if(x.t > this.m.t+1) { x.t = this.m.t+1; x._clamp(); } + this.mu._multiplyUpperTo(this.r2,this.m.t+1,this.q3); + this.m._multiplyLowerTo(this.q3,this.m.t+1,this.r2); + while(x.compareTo(this.r2) < 0) x._dAddOffset(1,this.m.t+1); + x._subTo(this.r2,x); + while(x.compareTo(this.m) >= 0) x._subTo(this.m,x); + } + + // r = x^2 mod m; x != r + function barrettSqrTo(x,r) { x._squareTo(r); this.reduce(r); } + + // r = x*y mod m; x,y != r + function barrettMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } + + Barrett.prototype.convert = barrettConvert; + Barrett.prototype.revert = barrettRevert; + Barrett.prototype.reduce = barrettReduce; + Barrett.prototype.mulTo = barrettMulTo; + Barrett.prototype.sqrTo = barrettSqrTo; + + // (public) this^e % m (HAC 14.85) + function bnModPow(e,m) { + var i = e.bitLength(), k, r = nbv(1), z; + if(i <= 0) return r; + else if(i < 18) k = 1; + else if(i < 48) k = 3; + else if(i < 144) k = 4; + else if(i < 768) k = 5; + else k = 6; + if(i < 8) + z = new Classic(m); + else if(m._isEven()) + z = new Barrett(m); + else + z = new Montgomery(m); + + // precomputation + var g = [], n = 3, k1 = k-1, km = (1<<k)-1; + g[1] = z.convert(this); + if(k > 1) { + var g2 = nbi(); + z.sqrTo(g[1],g2); + while(n <= km) { + g[n] = nbi(); + z.mulTo(g2,g[n-2],g[n]); + n += 2; + } + } + + var j = e.t-1, w, is1 = true, r2 = nbi(), t; + i = nbits(e[j])-1; + while(j >= 0) { + if(i >= k1) w = (e[j]>>(i-k1))&km; + else { + w = (e[j]&((1<<(i+1))-1))<<(k1-i); + if(j > 0) w |= e[j-1]>>(this._DB+i-k1); + } + + n = k; + while((w&1) == 0) { w >>= 1; --n; } + if((i -= n) < 0) { i += this._DB; --j; } + if(is1) { // ret == 1, don't bother squaring or multiplying it + g[w]._copyTo(r); + is1 = false; + } + else { + while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } + if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } + z.mulTo(r2,g[w],r); + } + + while(j >= 0 && (e[j]&(1<<i)) == 0) { + z.sqrTo(r,r2); t = r; r = r2; r2 = t; + if(--i < 0) { i = this._DB-1; --j; } + } + } + return z.revert(r); + } + + // (public) gcd(this,a) (HAC 14.54) + function bnGCD(a) { + var x = (this.s<0)?this.negate():this.clone(); + var y = (a.s<0)?a.negate():a.clone(); + if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } + var i = x.getLowestSetBit(), g = y.getLowestSetBit(); + if(g < 0) return x; + if(i < g) g = i; + if(g > 0) { + x._rShiftTo(g,x); + y._rShiftTo(g,y); + } + while(x.signum() > 0) { + if((i = x.getLowestSetBit()) > 0) x._rShiftTo(i,x); + if((i = y.getLowestSetBit()) > 0) y._rShiftTo(i,y); + if(x.compareTo(y) >= 0) { + x._subTo(y,x); + x._rShiftTo(1,x); + } + else { + y._subTo(x,y); + y._rShiftTo(1,y); + } + } + if(g > 0) y._lShiftTo(g,y); + return y; + } + + // (protected) this % n, n < 2^26 + function bnpModInt(n) { + if(n <= 0) return 0; + var d = this._DV%n, r = (this.s<0)?n-1:0; + if(this.t > 0) + if(d == 0) r = this[0]%n; + else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; + return r; + } + + // (public) 1/this % m (HAC 14.61) + function bnModInverse(m) { + var ac = m._isEven(); + if((this._isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; + var u = m.clone(), v = this.clone(); + var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); + while(u.signum() != 0) { + while(u._isEven()) { + u._rShiftTo(1,u); + if(ac) { + if(!a._isEven() || !b._isEven()) { a._addTo(this,a); b._subTo(m,b); } + a._rShiftTo(1,a); + } + else if(!b._isEven()) b._subTo(m,b); + b._rShiftTo(1,b); + } + while(v._isEven()) { + v._rShiftTo(1,v); + if(ac) { + if(!c._isEven() || !d._isEven()) { c._addTo(this,c); d._subTo(m,d); } + c._rShiftTo(1,c); + } + else if(!d._isEven()) d._subTo(m,d); + d._rShiftTo(1,d); + } + if(u.compareTo(v) >= 0) { + u._subTo(v,u); + if(ac) a._subTo(c,a); + b._subTo(d,b); + } + else { + v._subTo(u,v); + if(ac) c._subTo(a,c); + d._subTo(b,d); + } + } + if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; + if(d.compareTo(m) >= 0) return d.subtract(m); + if(d.signum() < 0) d._addTo(m,d); else return d; + if(d.signum() < 0) return d.add(m); else return d; + } + + var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; + var lplim = (1<<26)/lowprimes[lowprimes.length-1]; + + // (public) test primality with certainty >= 1-.5^t + function bnIsProbablePrime(t) { + var i, x = this.abs(); + if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { + for(i = 0; i < lowprimes.length; ++i) + if(x[0] == lowprimes[i]) return true; + return false; + } + if(x._isEven()) return false; + i = 1; + while(i < lowprimes.length) { + var m = lowprimes[i], j = i+1; + while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; + m = x._modInt(m); + while(i < j) if(m%lowprimes[i++] == 0) return false; + } + return x._millerRabin(t); + } + + // (protected) true if probably prime (HAC 4.24, Miller-Rabin) + function bnpMillerRabin(t) { + var n1 = this.subtract(BigInteger.ONE); + var k = n1.getLowestSetBit(); + if(k <= 0) return false; + var r = n1.shiftRight(k); + t = (t+1)>>1; + if(t > lowprimes.length) t = lowprimes.length; + var a = nbi(); + for(var i = 0; i < t; ++i) { + a._fromInt(lowprimes[i]); + var y = a.modPow(r,this); + if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { + var j = 1; + while(j++ < k && y.compareTo(n1) != 0) { + y = y.modPowInt(2,this); + if(y.compareTo(BigInteger.ONE) == 0) return false; + } + if(y.compareTo(n1) != 0) return false; + } + } + return true; + } + + dojo.extend(BigInteger, { + // protected + _chunkSize: bnpChunkSize, + _toRadix: bnpToRadix, + _fromRadix: bnpFromRadix, + _fromNumber: bnpFromNumber, + _bitwiseTo: bnpBitwiseTo, + _changeBit: bnpChangeBit, + _addTo: bnpAddTo, + _dMultiply: bnpDMultiply, + _dAddOffset: bnpDAddOffset, + _multiplyLowerTo: bnpMultiplyLowerTo, + _multiplyUpperTo: bnpMultiplyUpperTo, + _modInt: bnpModInt, + _millerRabin: bnpMillerRabin, + + // public + clone: bnClone, + intValue: bnIntValue, + byteValue: bnByteValue, + shortValue: bnShortValue, + signum: bnSigNum, + toByteArray: bnToByteArray, + equals: bnEquals, + min: bnMin, + max: bnMax, + and: bnAnd, + or: bnOr, + xor: bnXor, + andNot: bnAndNot, + not: bnNot, + shiftLeft: bnShiftLeft, + shiftRight: bnShiftRight, + getLowestSetBit: bnGetLowestSetBit, + bitCount: bnBitCount, + testBit: bnTestBit, + setBit: bnSetBit, + clearBit: bnClearBit, + flipBit: bnFlipBit, + add: bnAdd, + subtract: bnSubtract, + multiply: bnMultiply, + divide: bnDivide, + remainder: bnRemainder, + divideAndRemainder: bnDivideAndRemainder, + modPow: bnModPow, + modInverse: bnModInverse, + pow: bnPow, + gcd: bnGCD, + isProbablePrime: bnIsProbablePrime + }); + + // BigInteger interfaces not implemented in jsbn: + + // BigInteger(int signum, byte[] magnitude) + // double doubleValue() + // float floatValue() + // int hashCode() + // long longValue() + // static BigInteger valueOf(long val) + + return dojox.math.BigInteger; +}); |
