diff options
Diffstat (limited to 'js/dojo-1.7.2/dojox/lang/functional/tailrec.js')
| -rw-r--r-- | js/dojo-1.7.2/dojox/lang/functional/tailrec.js | 120 |
1 files changed, 120 insertions, 0 deletions
diff --git a/js/dojo-1.7.2/dojox/lang/functional/tailrec.js b/js/dojo-1.7.2/dojox/lang/functional/tailrec.js new file mode 100644 index 0000000..442e2be --- /dev/null +++ b/js/dojo-1.7.2/dojox/lang/functional/tailrec.js @@ -0,0 +1,120 @@ +//>>built +// wrapped by build app +define("dojox/lang/functional/tailrec", ["dijit","dojo","dojox","dojo/require!dojox/lang/functional/lambda,dojox/lang/functional/util"], function(dijit,dojo,dojox){ +dojo.provide("dojox.lang.functional.tailrec"); + +dojo.require("dojox.lang.functional.lambda"); +dojo.require("dojox.lang.functional.util"); + +// This module provides recursion combinators: +// - a tail recursion combinator. + +// Acknoledgements: +// - recursion combinators are inspired by Manfred von Thun's article +// "Recursion Theory and Joy" +// (http://www.latrobe.edu.au/philosophy/phimvt/joy/j05cmp.html) + +// Notes: +// - recursion combinators produce a function, which implements +// their respective recusion patterns. String lambdas are inlined, if possible. + +(function(){ + var df = dojox.lang.functional, inline = df.inlineLambda, _x ="_x"; + + df.tailrec = function( + /*Function|String|Array*/ cond, + /*Function|String|Array*/ then, + /*Function|String|Array*/ before){ + // summary: + // Generates a function for the tail recursion pattern. This is the simplified + // version of the linear recursive combinator without the "after" function, + // and with the modified "before" function. All parameter functions are called + // in the context of "this" object. + // cond: + // The lambda expression, which is used to detect the termination of recursion. + // It accepts the same parameter as the generated recursive function itself. + // This function should return "true", if the recursion should be stopped, + // and the "then" part should be executed. Otherwise the recursion will proceed. + // then: + // The lambda expression, which is called upon termination of the recursion. + // It accepts the same parameters as the generated recursive function itself. + // The returned value will be returned as the value of the generated function. + // before: + // The lambda expression, which is called before the recursive step. + // It accepts the same parameter as the generated recursive function itself, + // and returns an array of arguments for the next recursive call of + // the generated function. + + var c, t, b, cs, ts, bs, dict1 = {}, dict2 = {}, + add2dict = function(x){ dict1[x] = 1; }; + if(typeof cond == "string"){ + cs = inline(cond, _x, add2dict); + }else{ + c = df.lambda(cond); + cs = "_c.apply(this, _x)"; + dict2["_c=_t.c"] = 1; + } + if(typeof then == "string"){ + ts = inline(then, _x, add2dict); + }else{ + t = df.lambda(then); + ts = "_t.t.apply(this, _x)"; + } + if(typeof before == "string"){ + bs = inline(before, _x, add2dict); + }else{ + b = df.lambda(before); + bs = "_b.apply(this, _x)"; + dict2["_b=_t.b"] = 1; + } + var locals1 = df.keys(dict1), locals2 = df.keys(dict2), + f = new Function([], "var _x=arguments,_t=_x.callee,_c=_t.c,_b=_t.b".concat( // Function + locals1.length ? "," + locals1.join(",") : "", + locals2.length ? ",_t=_x.callee," + locals2.join(",") : t ? ",_t=_x.callee" : "", + ";for(;!", + cs, + ";_x=", + bs, + ");return ", + ts + )); + if(c){ f.c = c; } + if(t){ f.t = t; } + if(b){ f.b = b; } + return f; + }; +})(); + +/* +For documentation only: + +1) The original recursive version: + +var tailrec1 = function(cond, then, before){ + var cond = df.lambda(cond), + then = df.lambda(then), + before = df.lambda(before); + return function(){ + if(cond.apply(this, arguments)){ + return then.apply(this, arguments); + } + var args = before.apply(this, arguments); + return arguments.callee.apply(this, args); + }; +}; + +2) The original iterative version (before minification and inlining): + +var tailrec2 = function(cond, then, before){ + var cond = df.lambda(cond), + then = df.lambda(then), + before = df.lambda(before); + return function(){ + var args = arguments; + for(; !cond.apply(this, args); args = before.apply(this, args)); + return then.apply(this, args); + }; +}; + +*/ +}); |
